All posts by careflightcollective

Maths and Choppers from Norway to New South Wales

There are a bunch of ways to figure out where to put your resources. Dr Alan Garner found a guy who can crunch the big numbers to look at it a little differently. 

What’s the answer for optimal locations? First ask what is the question.

We have just had a new study published in BMC Emergency Medicine on modelling techniques to determine optimal base locations for helicopter emergency medical services (HEMS).  There is always more to say than can be covered in a publication so I thought I might have a look at some of those issues here.

First up is a big thank you to my co-author Pieter van den Berg from the Rotterdam School of Management in the Netherlands.  Pieter is the real brain behind the study and the mathematician behind the advanced modelling techniques we utilised.  Pieter has looked at HEMS base location optimisation previously in Norway and has done some modelling for Russel McDonald’s service Ornge in Ontario, Canada as well.  Without him the study would not have been possible.

So what did we do and why?

As already noted Pieter had recently done a similar exercise in Norway where the government has a requirement that 90% of the population should be accessible by physician staffed ambulances within 45mins.  Pieter and his co-authors were able to demonstrate that the network of 12 HEMS bases easily accomplishes this – indeed it could be done with just four optimally positioned bases.  They also modelled adding and moving bases to determine if the coverage percentage could be optimised with some small adjustments.

As it happens New South Wales (NSW) and Norway have very similar population densities and both are developed, first world jurisdictions.  Hence this previous study seemed a good place to start for a similar exercise in NSW.  Both jurisdictions also have geographical challenges; Norway is long and thin with population concentrated at the southern end whereas NSW has almost all the population of the state along the eastern coastal fringe with high concentration along the Newcastle – Sydney – Wollongong axis.

We were interested in population coverage but we also wanted to look at response times as this also is a key performance indicator for EMS systems.  It is certainly reported as a key indicator by NSW Ambulance.  Response times were not modelled in the Norwegian system so we were interested in seeing how the optimum base locations varied depending on the question that was asked, particularly in a jurisdiction such as NSW where the population is so concentrated to a non-central part of the state.

If you look at the study you will note from Figure 1 the existing arrangements in NSW. You’ll be shocked to know these arrangements weren’t planned in advance with the aid of a Dutch maths guru. These things happen organically. Nevertheless it provides a reasonable balance of response times and coverage although the gap on the north coast is immediately evident.

Figure 1If you start with a clean slate and optimally position bases for either population coverage or average response time, both models place bases to cover that part of the coast (see Figure 2).  Hardly surprising.  When we modelled to optimise the existing base structure by adding or moving one or two bases, the mid north coast was either first or second location chosen by either model too.

Figure 2

This seems an obvious outcome from even a glance at the population distribution and current coverage in Figure 1.  What is surprising is that the 2012 review of the HEMS system in NSW (not publically released) which utilised the same census data in demand modelling did not come to the same conclusion when two previous reviews in the 1990s and 2000s had recommended just such a change.  Certainly the Reform plan for helicopter services which was released the following year did not make any changes or additions to base locations leaving this significant gap still uncovered.

Wagga Wagga was the other location identified for a HEMS base in the 2004 review.  Interestingly it is favoured as the first relocated base when the existing structure is optimised for average response time by moving Canberra to this location.  But a Wagga Wagga base also was not mentioned in the reform plan.

What about the green fields?

When the green field modelling was done it is clear that the current NSW system mostly closely resembles the model optimised for average response time, rather than coverage.  The Wollongong base really justifies its location on this basis as it contributes to a better overall average response time.  Its population coverage falls entirely within the overlapping circles of the Sydney and Canberra bases so it makes no contribution here, at least if a 45min response time is used as the standard.

There was another aspect that interested us compared with Norway.  In Norway all aircraft have the same capability and this is also true for the recently tendered services in NSW.  The unusual feature in NSW though (unique to Australia although common in Europe in particular) is a dedicated urban prehospital service operating from a base near to the demographic centre of the largest population density – Sydney.  The performance characteristics of this service have been well described (by us, because I’m talking about the CareFlight service which I think does serve a useful function) previously and when it was operating with its own dispatch system was the fastest service of its kind in the world to our knowledge.

Like the Wollongong service it operates entirely within the population coverage circles of other bases, but it makes an enormous contribution to average response time.  When this rapid response urban service is added to the network of large multirole helicopters in NSW the average response time across the entire state falls by more than 3.5mins because that service is able to access more than 70% of the state population within its catchment zone, and significantly faster than the multirole machines.

This modelling only takes into account the response time benefit of the specialisation afforded by such as service.  We have previously been able to demonstrate that the service is also much faster in almost every other aspect of care delivering patients to the major trauma services in Sydney only a few minutes slower than the road paramedic system but with much higher rates of intervention and ultimately passage through the ED to CT scan faster than either the road paramedic or multirole retrieval systems in NSW.  At least this was the case when it had its own specialised dispatch system but that is a story we have discussed previously too.

There are recurrent themes here.  The Rapid Response Helicopter service adds significantly to the response capability in NSW whether you model it using advanced mathematical techniques or whether look at the actual response data compared with the alternative models of care.  Indeed the real data is much stronger than the modelling.  It seems that at least in large population centres in Australia there is a role for European style HEMS in parallel with the more traditional multirole Australian HEMS models that service the great distances of rural and remote Australia.  Different options can work alongside one another to strengthen the whole system and better deliver stuff that is good for patients – timely responses when they really need them. The capability differences however need to be reflected in dispatch systems that maximise the benefits which come with specialisation rather than a one size fits all tasking model that takes no account of those significant differences.

Every version of the numbers I look at tell the same story.

 

Notes and References:

While this post covers a few ways of looking at a tricky sort of problem, there are lots of clever people out there with insights into how these things work. If you have ideas or examples from your own area, drop into the comments and help people learn.

Now, the paper that’s just been published is this one:

Garner AA, van den Berg PL. Locating helicopter emergency medical service bases to optimise population coverage versus average response times. BMC Emerg Med. 2017;17:31. 

The paper on optimal base locations in Norway is this one:

Røislien J, van den Berg PL, Lindner T, et al. Exploring optimal air ambulance base locations in Norway using advanced mathematical modelling. Injury Prevention. 2017;23:10-15.

And if you like any of the posts on here, then maybe share them around. Or sign up for an update when new posts hit with the email sign on thing.

 

Tactical Update – A Report from TacT17

OK it’s a few weeks back, but here’s Greg Brown with the lowdown on a conference about tactical matters. 

Conferences: a formal meeting of people with a shared interest, typically one that takes place over several days; the means by which professionals from around the globe congregate with a view to learning from each other. Sometimes also referred to as junkets, jollies, paid holidays and tax write-offs.

But in all honesty, oftentimes the only way one can be afforded the chance to be surrounded by like-minded professionals with a view to learning from the experience of others, benchmarking your intellectual property against that of other organisations operating in the same “space” and refining your knowledge thanks to the latest in international research is to travel to the other side of the world and attend a conference. So, as one of the few non-government providers of tactical medicine training in Australia, that’s precisely what we did.

In mid-October 2017 two of CareFlight Education’s staff travelled to sunny (well, we assume there was sun above the pouring rain) Sundsvall, Sweden, to attend the inaugural Tactical Trauma conference.  If you are on Twitter, you can search for it using #TacT17. If you are not on Twitter, then join Twitter and search for it using #TacT17….

This post provides a summary of what we found, what we liked, what we didn’t like and some takeaway points.

Patch
The words are cool probably, but maybe put a shirt on when you hold Death back buddy.

The Peeps

This was truly an international event. Presenters came from across Europe (with a strong Scandinavian presence, as expected), North America, the Middle East and even Australia. Participants included both hospital and pre-hospital doctors, nurses, paramedics, police medics, retrieval (road and air) clinicians and military folk.

The Stuff to Chew On

As the name “Tactical Trauma” suggests, the conference was focussed on the medical management of trauma with a tactical twist. It should be noted that discussions regarding any tactical imperatives were limited by the realities of operational security. For obvious reasons, nobody wished to describe their unit’s tactics in great detail.  They were enough to paint the scene though.

Therefore, if you were looking to learn how to become the next big thing in SWAT team medicine then this conference probably wasn’t for you – and there certainly were no skill sessions on how to kick in doors, breach a terrorist stronghold or fast rope from a helicopter (although these might be popular sessions next time).

Rather, focus was placed on the provision of “good medicine in bad places”. There were sessions by military doctors discussing what worked (and what didn’t) on recent deployments (including topics such as blast injuries, penetrating chest injuries and rates of injuries in dynamic events), the usefulness (or otherwise) of helicopter emergency medical services in hostile mass casualty events, comparisons of contemporary haemostatic agents versus conventional bandages in wound packing, the perils of acute traumatic coagulopathy, discussions on vascular access options, and the progress over the years in the application of clinical management strategies. It is also worth noting that since this is in fact 2017 no medical conference would be complete without at least one presentation on POCUS (that’s Point Of Care UltraSound – and yes, it is very useful) and one on REBOA (or Resuscitative Endovascular Balloon Occlusion of the Aorta – and no, there is not enough evidence to definitively support it); these were dutifully attended to.

Case studies are always useful; in this instance we were treated to reviews by the Finnish and Norwegians of their tactical emergency medical support systems, the Israelis and their medical response to contemporary domestic contingencies and both the French and Swedish on their responses to recent mass casualty events. There were also a few “closed door” sessions for police medics regarding recent mass casualty events in the USA.

But finally, as most of us already appreciate, being outstanding at your trade is only part of the job; the ability to communicate effectively with your team members whilst managing your own stress levels are also vital in providing optimal patient care. As such, sessions on crew resource management skills, the cognitive revolution, tips for centring one’s self prior to and during a job, and how to get the rollout of good ideas actually rolling were welcome additions to the program.

Things We Liked

  • Firstly, whilst it is obvious that military experiences inform civilian practices, we appreciated the fact that this conference was focussed on civilian (not military) practice. Other conferences of the type claim to do this yet the majority of the auditorium is filled with uniforms of various militaries.
  • Secondly, sessions were kept at a length that were short enough to retain audience attention but long enough to cover the required level of detail for the given topic. If a topic was not floating your boat, a new topic would commence in 20 minutes.
  • Thirdly, at no point did we hear “you must do it this way – if not, you are wrong”. The overall feel of the conference was that no single entity had all the answers but that through collaboration we can all improve. Participants were encouraged to seek out presenters (who were all easy to find) and undertake collaboration.
  • Finally, the focus was on “good medicine in bad places” and not cool Velcro patches, the latest fashion in tactical gear (which would obviously only come in black and be stamped with a label consisting only of numbers) and the liberal application of mutual back-slapping.

Things That Were Not the Business For Us

  • Despite the fact that the conference was aimed at civilian practice, the majority of presenters referred to TCCC (Tactical Combat Casualty Care) and not TECC (Tactical Emergency Casualty Care). It is possible that the presenters were using the term TCCC out of habit, but when one considers that the latest review of TCCC by the Committee has lead to their terms coming closer into line with that of TECC (and not vice versa), it is time that the world started embracing the correct terminology.
  • Having a single track makes it hard to keep everybody interested, and at times we felt sorry for certain members in the room. These folks included frontline police officers who have a secondary role of medical response – whilst the clinicians were riveted by the maps of clotting cascades and stories of roadside REBOA, the Police Medics just wanted to know (a) how best to plug the hole, and (b) how fast to drive.

[Note: we got the impression that the conference convenors were victims of their own success – we are not sure they realised just how popular it might be when they originally floated the idea on social media. We are confident that this issue will be alleviated next time.]

The Takeaways

If you had to sum up the content of a jam-packed two-day conference in just a handful of points then these would be them [note: these are more paraphrases than quotes]:

  • “Learn from the experiences of others. Recognise that no single agency has all the answers, so work with and not against each other.” Matt Libby, flight paramedic with Boston Med Flight, USA
  • “In resuscitation, the most effective therapies are those that can be applied quickly. Time is blood.” Dr Richard Dutton, trauma anaesthetist, USA
  • “You can possess all the best haemorrhage control devices in the world, but if you are not using them properly then they are worthless. Training is key.” Dr Mark Forrest, medical director of ATACC, UK
  • “Battlefield medicine is like plumbing: if it’s blocked, clear it; if it’s leaking, plug it.” Gary Grossman, CSAR paramedic, Israel
  • “In a high risk or major incident, it makes sense to have all rescue agencies working together under a common SOP that has been tested prior.” Dr Stephen Sollid, medical director and retrievalist, Norway
  • “REBOA has a place in pre-hospital care; we are just not quite sure what that place is. Blood will still be lost from backflow.” Dr Tal Hörer, vascular surgeon, Sweden
  • “Medics in the hot zone should focus on not getting themselves killed and not endangering the mission. Cross training is vital.” Dr (LTCOL) Ishay Ostfeld, IDF and cardiothoracic surgeon, Israel
  • “In a critical patient, performance of life saving interventions should take precedence over applying rigid protocols around immobilisation.” Dr Thomas Dolven, intensivist and retrievalist, Norway
  • “People only improve if they actually want to. You cannot force improvement.” Michael Lauria, former USAF PJ and current medical student, USA
  • “When it comes to vascular access, there should not be different hospital standards and prehospital standards. There should just be standards.” Dr Knut Taxbro, anaesthetist and retrievalist, Sweden.

The Recommendation

So I guess the big question that remains for everyone is “was 50+ hours of travel from Australia to central Sweden for a 17 hour conference really worth it?” Given that we were able to assess the content of our training against that which other like-minded organisations from around the world provide in an open and non-threatening forum, tweak our content in line with the latest evidence, build contacts with groups and individuals that have the same struggles as we do in Australia, and provide some guidance to participants who were looking to develop their own tactical medicine training – the answer is obvious.

Moose
Look it’s hard to respect an animal mascot that doesn’t spend most of its time sleeping like a koala but good effort I guess.

Wait, I almost forgot the really vital lessons

These things:

  • The Swedish love speed cameras. I mean, seriously, they are everywhere!
  • Reindeer is actually quite tasty.
  • Moose is a bit, well, meh….
  • When it comes to rivalries, Norway is to Sweden what New Zealand is to Australia.
  • The Australian TV shows “Prisoner” and “Flying Doctors” are compulsory viewing for Swedes.
  • And 50+ hours of travel by air is in fact a very long way – but it beats driving.

 

Notes:

Hey, are you interested in this stuff?

Well you could choose to read our previous posts about TECC here, here, or here. If you do you’ll find heaps of references and further reading on all things tactical.

CareFlight does have courses on that sort of stuff (it’s one of the bits you can find here) so you might find a bit of interest in that or, [looks shy, kicks dirt] y’know, do whatever. If you were interested (but no pressure) it runs pretty regularly (like in 2018 it’s happening on 12 February, 26 May, 20 August and 24 November).

Meanwhile if you like the stuff on the site you could always share it around. Or even sign up to get the emails whenever things hit.

 

 

Podcast #4 – Another Side

Straight back with another podcast and with the same guest, Dr Blair Munford. 

This time Blair has a very different type of story to share.

Please have a listen and consider sharing. Or if you like the site consider signing up to get emails when posts hit.

Anyway, here’s the various ways to get the podcast.

Right click and choose save as to download the podcast. (That’s control-click if you’re on a trusty Mac.)

Of course you could just find the podcast over at iTunes here.

Or the rss feed is here.

justin-luebke-43531

There’s a chance that something about Blair’s story might make you want to help someone, somehow. If that’s the case either drop a message in the comments or email at careflightcollective@gmail.com and we’ll follow up.

In this episode all the music is by Broke for Free and available via Creative Commons at the Free Music Archive.

The image is by Justin Luebke and was uncovered at unsplash.com

 

Podcast #3 – Introducing Blair

Finally, we decided to record someone. Dr Andrew Weatherall with a new contributor, Dr Blair Munford. 

So we always meant to include the occasional podcast. Finally it might happen. This episode features Dr Blair Munford, whose career in prehospital and retrieval medicine started back in the mid-80s when flight suits probably required shoulder pads and big hair. Blair should be dropping by pretty regularly but this is an introduction with a reflection on a bit of history and a few tales of a life in retrieval (all de-identified and with clearance previously provided).

Anyway, it’s a long history (if you want to get some sense of it if you drop by CareFlight’s publications page you can see him way back at the start, around the time he was kicking off with descriptions of the CareFlight stretcher bridge in 1990).

Les Chatfield
Actual line up of potential multi-patient retrieval transport vehicles when Blair started.

Anyway, here’s the various ways to get the podcast.

Right click and choose save as to download the podcast. (That’s control-click if you’re on a trusty Mac.)

Of course you could just find the podcast over at iTunes here.

Or the rss feed is here.

 

Intro and outro music is here under Creative Commons via the Free Music Archive. The intro is from ‘Only Instrumental’ by Broke for Free. The outro is ‘Lewd’ by Just Plain Ant.

The image was via flickr Creative Commons and posted by Les Chatfield (and is unaltered here).

Simple Systems for Getting Things Done in Retrieval

Well this time around we welcome a new contributor. Dr Shane Trevithick is a retrieval doctor with many years experience covering prehospital, interhospital and coordination work when he’s not being an emergency doctor. He’s got a bit on simple systematic approaches that get the job done. 

One of the exciting things that practicing medicine out of a helicopter does is make you a “Rock Star” of the medical world.  Your colleagues and the general public are amazed by your method of arrival on scene, the ensuing dramatic interventions, the sexy uniform, your appearance on the evening news and your general confidence back in the hospital when you can manage dramatic medical problems which seem much easier when they are not trapped upside down in wreckage.

The problem with being a Rock Star performing in a band is that to continue being the Rolling Stones of Medicine [Ed: we would not suggest this reference is in any way a sign of author age] you feel compelled to keep releasing new albums regularly.  This can be a problem, especially with social media, as developments in medicine do not keep pace with the need to tweet and podcast and you are at risk of grabbing the latest study or technique involving patient plumbing and announcing this to the world as the next big thing in the world of Helicopter Rock Band Medicine.

This does tend to mean that you can gloss over some of the basic things which really make a difference to your medicine and your patients. Just like a Rock Star will be completely familiar with the basic things that makes playing their instrument possible, it helps if you can really nail the basics.

So here are a few tips that work for me to do a better job as a retrievalist in whichever team I’m working in.
Have a Plan

A good plan when you approach a patient makes a big difference, especially for an interhospital retrieval. This makes a huge difference to the smoothness of how your retrieval will flow and reduces your risk of making an error by omitting something.  This is a bit like having a checklist but I don’t quite use it like that because really a checklist involves a bit of call and response.  It’s not quite a strict list, more like having a systematic approach to reduce the risk of error.  If you have the same pattern to how you do things you get much quicker and slicker and you are much less likely to miss something.

It took me a lot of years to work out I didn’t have a consistent system.  And when I analysed some the mistakes and complications I had I realised they came about because, like a good anaesthetic registrar would, I modified what I did to fit the Paramedic I was working with, rather than communicating a system that would ensure I didn’t miss things.  If I had actually had any system to do the job myself then I would have avoided a lot of problems.

So here’s the system I created for myself. It might work for you, or might just prompt you to think through what system would work best for your brain.

OLYMPUS DIGITAL CAMERA

A: Airway

  • Check ETT Size and measurement at a fixed point (e.g. teeth).
  • Check ETT Security – that means connections and how well it is tied/taped. I almost always find myself fixing something about security.
  • Check ETT Site – on an X-ray.

duncan c

B: Breathing

  • How well is the patient breathing? It’s a seemingly simple step but yes, I still remind myself.
  • What are the ventilator settings? Got it, now match them (with the transport ventilator). I tend to work with paramedics who make logistics and practicalities in a brilliant fashion. It always seems that just as I get this step done they are ready with a patient slide to transfer the patient onto the stretcher.

duncan c2

C: Circulation

  • What’s the IV access? Secure that well too.
  • What about the arterial line? Critically ill patients being moved should have this so now is the moment to make sure it’s connected, working and zeroed. This usually matches up with when my friendly paramedic is miraculously also up to the exact bit where I should be helping with the monitoring.

ThoreauDown

D: Drugs

  • Think “I need enough sedation for 3 times the anticipated length of transfer” and make sure you’re ready (plus see the bit below).
  • Also have a think about what things you have handy as downers (mostly sedation and analgesia) and uppers (like metaraminol) which might just come in handy if you get the downers bit not quite right (or for other reasons of course).

Bart Everson

E: Everything Else

  • Do you have all the equipment you brought with you?
  • Do you have the notes?
  • Do you have any scans?
  • Do you have ALL the equipment you brought with you?
  • Do you have any patient belongings, either the material ones or the relatives that also belong to them that you might be bringing?
  • No, really, do you have ALL the equipment?

 

Now, about that sedation

Yes, I gave this it’s own bit because it is really important. Let’s assume you’re highly skilled at drug-assisted intubation. After that there is the post intubation phase, whether you have intubated the patient yourself or whether the patient comes already intubated.

I think it is really important to make a couple of distinctions in retrieval.  One is you are giving “a Retrieval” and NOT “an Anaesthetic” or “a Sedation”.  An Anaesthetic is an art form so important there is an entire medical specialty devoted to it.  But it is basically focussed on having someone pain free, unconscious of what item number is being performed on them, and then woken to a state of bliss in a a calm quiet environment surrounded by nurses fussing over you.  Usually woken relatively quickly after the item number as well.

This does not apply to retrieval.  In a retrieval you do not want your patient to wake up.  Especially over that last speed hump on the roads leading to the hospital.  With apologies to ICU that your retrieval patient will take a day longer to wake up than someone they lightly sedated you have to remember it is not a “sedation” it is a “retrieval”.

There is very little fussing (doctor dependant) and a lot of shaking up/moving/noise/vibration/stimulation.  When I was a retrieval registrar no one discussed this with me and since I was very comfortable to treat people with morphine and midazolam either together or separately, with propofol, (ketamine hadn’t come into use again when I was a registrar) and with fentanyl I just kept running whatever the hospital had chosen assuming that since they were a hospital they had correctly chosen the right sedation for the right patient.  It was also quicker and easier to just keep running whatever they started as we didn’t have to go through the entire fuss of drawing up new drugs.

I am now, with experience, absolutely sure that this is not best practice.  Now I don’t use propofol at all for a retrieval – it is an ideal anaesthetic drug which makes it very poor for A Retrieval. Of course that is only my opinion born of experience with no published data I am aware of (there is a study for someone) however I can promise you that performing a “retrieval” after intubation requires only two drugs for maximum benefit:  Separate infusions of fentanyl and midazolam.  If you are running two inotropes and only have one pump left I will allow you to mix them together but the ideal concentrations are 1000mcg fentanyl in 50mL and 50mg of midazolam in 50mL.  Run them at 10x higher doses than you would use in ICU so you need to think about starting at 200-400mcg/hr fentanyl and heading north and 5-10mg/hr of midazolam.

And if you arrive and your patient is light and coughing on the tube, if their haemodynamics will tolerate it just give them substantial loading doses of these drugs, say 0.1mg/kg midaz and 2mcg/kg fentanyl and then start your high dose infusion.  I can promise you this will be the best tolerated, most cardiostable way of performing “A Retrieval”.

Just remember the gotcha – as your helicopter starts to land at the hospital it will shake violently for 30 seconds or so.  This will cause your patient to wake up and extubate themselves at the one time you can’t go out of  your seatbelt to fix the problem.  Remember to bolus before landing.

 

So there you go.  Some of the basics that can help you be the Rock Star you want to be.

 

Notes:

All the images here are via Creative Commons on flickr and are unchanged here and put up by Izzy by the Sea, Duncan C, ThoreauDown and Bart Everson.

If you have suggestions for future posts hit us up. And if you like the stuff around these parts, you could always consider sharing or signing up to receive emails.

 

 

 

Just a Prick – Things that Might Just Work with Kids IVs

Putting a cannula in kids can be… well, an experience. Dr Andrew Weatherall has a collection of tips and tricks that might just be useful. 

 

Cannulas. Little people. Not always a match made in heaven. At the joint I work doing kids’ anaesthesia, we often note that they are the great leveller because it doesn’t matter how special you’re feeling, you’re just one lousy cannulation day away from feeling very, very mortal.

They are sort of essential for prehospital and retrieval work though. The thing is that we know that if you’re not working in a designated paediatrics job, the chances are that the little sprocket end of the market is by far the group you see the least. Which is not ideal for gaining and retaining skills.

So short of approaching random families in the street to see if the kids have always felt like their life was missing a cannula and would they like you to help with that (and that is a terrible start-up idea, don’t do that),  you have to make your best of the opportunities you have and draw on thoughts from other people.

So collected here are a bunch of things that help me get those little cannulas in. It’s not an exhaustive list of everything everyone has ever come up with of course. It’s just stuff that works in my hands that I’m sharing, partly in the hope that other clever people will chip in with suggestions in response. There must be some experts out there that we just need to poke enough to make them vomit up their wisdom.

I’m even going to leave out the “give them an anaesthetic and get them to sleep” one because it feels a little like cheating for this scenario.  And for the purposes of this post I’m not going into ultrasound stuff because that’s a whole extra thing. Let’s just put on record that if you’re cannulating for retrieval give it a strong thought.

So in a “not necessarily the most sensible order” kind of way, here’s how I’d think through that whole cannulation palaver:

1. What’s my aim here?

Knowing why you’re bothering with that cannula might seem like a dopey place to start but it sort of determines a bunch of decisions that follow. If you’re in a prehospital setting and you’re thinking of the cannula to get analgesia happening, do you have options you can start with first (intranasal or methoxyflurane etc) that will treat the clinical problem in the short-term and buy you time (plus help the kid, family and you) before getting to the cannula you might need long-term?

Are you adding one as a precaution for transfer? Is that the best choice for the patient and you? If it’s not time-critical do you have time for local anaesthetic options to do their thing?

Do you need the sort of urgent access that might befit an intraosseous option, then quick resuscitation and then an attempt at an IV once there are actually veins that have actual circulating volume in them to work with?

In this setting, it might well be that the IV is exactly what you need of course. But making that an explicit step in your thinking is a good thing. It makes you really prioritise the vital steps for management of the patient.

2. What’s my limit?

This flows from point 1. How many attempts would you consider before you try something new (like a different form of access, or asking someone else to have a go)? If it’s a cannula that must be done, your limits are going to be different than if you have nothing to start with. If you’re in a retrieval, rather than prehospital setting through there might be lots of clever people who can help (or who could do it while you do things that only you can do).

Setting some sort of soft limit where you will stop and reassess does stop you getting into the hole that comes with “I have to get this in” to the point where you forget the primary needs of the patient and it becomes mostly about pride. I’ve been there. A pride hole helps no one.

I don’t think you run the risk of mentally setting up with an assumption that your attempt will go wrong by having that limit either. It’s just about keeping whatever the primary goal of care (which is almost never the cannula itself, but what you can provide with the cannula) foremost in your mind.

Limit Vandys
Thinking and prep time might just save you a bit of time later

3. Super prep

Preparation is pretty much everything here.

The Patient

And whoever is helping them obviously but mainly the patient. If you’re with an awake patient, then telling them what you’re going to do and why is a pretty important place to start. The style that people employ for this can vary but one thing I’d be pretty firm on is that you can’t win by being dishonest. If it’s likely to hurt, don’t promise it won’t. If they’ll still feel pushing (like when you’ve used local anaesthetic cream), probably warn them. Let them know if you’re going to get someone to do the work of keeping a limb still. Explain steps as you go.

Positioning

If you can, choose to work in a position you find comfortable. Removing any degree of strain from your own posture just makes it easier to keep your later movements refined and precise. Not always possible, but working at the right height or even sitting down can make all the difference.

Look Everywhere

Way too often over my career I’ve gone to put a cannula in a spot because it seems convenient and later realised there was a much more accommodating vein somewhere else. There is something even more convenient than a vein that is close to where you’re standing. The vein that will actually help you out that’s all the way over there. Over that other side.

Check all 4 limbs, every time you can.

The Kit

Stuff for cleaning, stuff for doing, stuff for securing. Have it all ready to go (and that includes a back-up cannula ready in case you need to move on to another attempt). Once it’s in you want to be able to have it secured as quickly as possible. And once you’re under way you don’t want to be distracted by needing to reach for anything else.

A really good clean with an alcohol swab has an additional purpose. Sometimes it highlights a change in contour of the skin as the light picks it up and this reveals a vein. Sneaky and appropriate infection control.

4. The Actual Doing

Right. The pointy end. So to speak. Not so certain about this bit? Well these are all things I  do or have seen others do. Comprehensive? Probably not. For everyone? Maybe not but worth a think I reckon.

Choose your cannula

First up, examine that vein and decide which cannula you think will actually go in it. We all love a cannula big enough to rehydrate a woolly mammoth (and think how dried out those codgers would be now), but the truth of paediatric patients is that you don’t need a massive cannula to achieve good fluid loading. And you can definitely resuscitate more effectively with a smaller cannula in the vein than a bigger one in the subcutaneous tissues.

I’d even cope with a not-super-huge cannula in the cubital fossa if that’s what you need to get things rolling. At the hospital we regularly resuscitate kids without a huge cannula. It just needs a syringe and a 3 way tap (and you can actually do with most lines without a 3-way tap). Mostly it’s actually about paying attention and doing it, rather than letting it run.

Line it up

Absolutely the commonest thing I see trainees do when they are struggling is not actually lining up the cannula with the vein it is supposed to slide into. The entry point is somewhere near, but if you look at the barrel of the cannula, it doesn’t line up with the direction of the cannula. Good luck with that.

Don’t focus so much on the entry point you forget the rest of the thing.

Make a hole

OK this one is probably more for the retrieval setting (and particularly for tiny ones) though I guess in principle as long as you have good sharps management you could maybe consider it for prehospital work (I’ve never done it there though). Not sure I’d try it in an awake child without some local numbing happen either.

After you choose your cannula, get a needle bigger than the gauge of the cannula. Make a hole in the skin at your entry point. Now when your smaller cannula passes through the hole you shouldn’t have the skin dragged in with it at all. You should lose all resistance at that level actually. Do it right and pretty often you’ll feel the end of the cannula pop into the vein before any visual clue like a flashback tells you that you’ve made it.

Note that having gauze handy for any small amount of blood ooze that would obscure the entry point is helpful here.

Petras Gagilas
Look, not so big you can see light through it, but something.

The saline trick

I think this only works with non-safety cannulae. Basically you fill the hub with saline and when you hit a small vein you’ll see a super quick flashback (even just starting with a quick change in the light in the saline). This one’s particularly useful for getting early warning in tiny veins to avoid going straight through.

Short and sharp

You probably understand that you need to come really flat to the vein with your angle of approach (by all means be at a more acute angle to get through the skin, but approaching the vein should be pretty flat).

The other key bit though is short, sharp movements forward followed by a pause. I tend to find slow advancing just doesn’t do the job in little people’s veins. It’s like the slow distortion of the tissues encourages them to roll out of the way (you can even see it on ultrasound). A sharp move forward, then a pause, then repeat just seems to work better.

The Roll

You get the flashback. Victory! Except you still need to advance and you’re worried it’s a bit small that there vein. So do a really small advance. Then rotate the whole cannula (as in the needle bit as well) 180 degrees. The leading edge of the needle is now closest to the skin, and the pointy bit isn’t going to go ahead and spear the back wall. Advance a little more. Now feed off the cannula.

The Twist

This trick is more well known. Once you think you’re in that vein, twist the cannula off into the vein. In bigger kids it’s probably no help but in smaller veins it does seem to sometimes help get it not to catch up on the wall of the vessel.

Wired for Not Sound

This one is not really a prehospital thing but if in a retrieval-type situation you could consider this one. Have a think about getting familiar with wires for Seldinger options. There are manufacturers out there making short wires that will feed down a 24 gauge cannula. Arrow make one that is 0.018 inches (diameter) and Cook make one even smaller (at 0.015″). When you have one of those cannulae you really want but after you feed it off it’s all gloom, a wire can rescue you.

The technique (with appropriate cleanliness and wire precautions to ensure you don’t lose it in the vein all in place) is to gently start pulling back just the cannula until you have blood freely flowing back. If you gently advance the wire up the cannula at this point it will sometimes find its way perfectly up the vein. If so, you now have an introducer to place a cannula (maybe even one larger than the one used for access).

Not a technique to try in anger for the first time without someone who has done it nearby I’d say.

It’s also worth noting that not all wire/cannula relationships are without challenges. For whatever reason a Surflo 24 gauge cannula will absolutely not allow a 0.018 inch wire through. A 24 gauge Insyte? Well they were made for each other. Go figure.

4. The Strapping

Well that’s a completely different post. I only wish someone had good tips for things like that (like say, here).

For kids cannulas there are a lot of techniques out there and lots of strong opinions about tape. My main thoughts would be:

  • The tape has to be in contact with the actual thing it is supposed to hold. Sometimes I see people holding tapes tight as they put it across the cannula, thereby guaranteeing the tape only contacts the top surface and is then stretched onto the skin. Form the tape closely to the cannula itself. Squeeze it right on there to get maximum tape-to-cannula contact. Then lay it across the skin (no stretching) and put some pressure on it to get adherence happening.
  • Really think hard about things like boards. If they are not adding security for that cannula, you can almost guarantee they are adding annoyance for the patient.

 

So there’s a start. I bet people have more I’ve forgotten or don’t even know about though.

You might just find some of these tips help though. And if that’s the case you will hopefully end up not being the big prick finding it a bit of a prick to get a little prick done for a little kid.

Little kid. What did you think I was going to say?

Notes:

I am not kidding about hoping people will have better tips. That’s what the comments bit is for. Go nuts. Or share the post and see if someone else has one.

Also, if you like the posts here remember you can sign up to get emails whenever they drop. It should be here on the page somewhere.

The images here were from vandys (the speed limit one) and Petras Gagilas (the tunnel thing) and used unchanged from their spot on flickr under Creative Commons.

 

 

 

 

 

 

I Wish I Knew Then What I Know Now – Holding the Line

Back with another instalment in the popular series “I wish I knew then what I know now” is Greg Brown, current Education Manager / Clinical Nurse Consultant with CareFlight and former Australian Army officer.

Intravenous cannulation: the art of finding the biggest tube with a sharp point in your kit and placing it in the most proximal vein you can find so you can deliver various fluids or medications that may or may not make the patient feel better but certainly help you feel as though you have achieved something.

Okay, this might be a bit of a stretch – but in all seriousness the ability to gain and maintain dedicated vascular access in your sick patient is a vital component of medical care for nurses, paramedics and doctors alike. For many (both in and out of hospitals), the ability to find that elusive vein is a point of pride, and getting that solid red flashback in the chamber of the cannula is at times the cue for the treating team to stop holding their breath.

But the IV cannulation process is not complete once the [insert name of your service’s approved form of IV dressing] is applied. In the retrieval world, an IV cannula is almost always going to have fluids flowing through it (or at least attached to it). Having fluids attached gives the healthcare provider a ready-made flush for those medications that are used in treating the patient. Want to give a bolus of IV ketamine? You are going to need an IV flush. IV fentanyl? Flush.  IV anything? Flush. You are going to be flushing everything, so you might as well attach a 1000mL bag of “flush” via a giving set and have it ready at all times.

Herein lies the problem. For anybody who has ever had to move a patient with an IV line attached, you know just how easy it is for that line to get snagged – and before you know it, your precious cannula is now no longer in a vein and instead is irrigating the helicopter floor / CT machine / footwell of the crashed car etc. Your service’s approved form of IV dressing might be awesome at holding an IV cannula in place, but it is no match for the body weight of that burly rescue technician with the IV line inadvertently wrapped around his leg who is moving in the opposite direction to the patient.

Laws to Live By

Many years ago at CareFlight, one of our “grey beards” (Dr Blair Munford, anaesthetist extraordinaire), came up with what we now call ‘Munford’s Law of Taping’ which states:

The length of tape used on the patient should not exceed the distance between the point of injury and the receiving hospital, but anything less is acceptable.”

 Taping IV lines is a good thing, but tape doesn’t work great on wet, hairy or dusty patients. Sure, you can circumferentially tape the IV line to the arm such that the tape sticks to itself and not the patient, but that is a lot of non-stretchy tape.

Story time. Many years ago, whilst on deployment with the Army, I was tasked with transferring a civilian casualty from the scene of a vehicle accident to a landing point whereupon she was to be whisked away to a United Nations hospital by helicopter. The accident involved an overcrowded minivan which failed to negotiate a corner resulting in it rolling. The knock-on effect was a mass casualty incident halfway between two forward operating bases. Medical and security assets were despatched to the scene, including myself as a young (ish) nursing officer.

After the usual initial chaos that results when medicine and tactics collide, we dutifully set about the triage and treatment of casualties in accordance with priorities and started stacking inbound AME assets. Unfortunately, given the topography, the AME teams could not land on site; therefore, we were required to ferry the casualties from the scene to a landing point about 2km away.

One particular casualty of mine was a lady with a mid-shaft femur fracture and a handful of broken ribs. I had applied a Donway Traction Splint to the leg, some oxygen and was trying to bump up her blood pressure with crystalloids whilst controlling her pain with increments of IV morphine. I had placed an IV in her antecubital fossa and had “secured” the giving set with some tape. However, despite the accumulative administration of a lot of morphine (the exact dose escapes my memory), she was still very obviously in pain. The problem? As we loaded her into the vehicle, the IV line became looped around the stretcher handle and the cannula had dislodged.

Ordinarily I’d have just placed another IV and started again; but in this case I had two problems: (1) being a mass casualty incident my stores had been pillaged leaving me unable to place another IV, and (2) the Blackhawk was already flaring (meaning it was about to land), so I didn’t have time to go back to the scene to grab more stuff. This was a major fail when it came to managing this patient. And in addition, the woman’s pain and lack of analgesia were about to become the AME team’s problem, but the embarrassment of losing the ONLY IV access this patient possessed was mine alone.

But, in the words of S.E. Hinton, “that was then, this is now”.

Simple Solutions

There exists a remarkably simple solution to this problem, and it involves a bandage. We now teach this technique to anybody who will listen because, quite simply, there is no good reason for losing an IV. It works on the side of the road; it works in an ambulance; it works in Emergency Departments; and interestingly, it works really well in those dementia patients that occupy their time by trying to undo every single medical intervention you’ve applied during your 12 hour night duty!

Step 1: Place an IV cannula in your patient in accordance the patient’s need and your ability / scope of practice. Apply whatever dressing your service says you should.

Step 2: Attach your primed IV line as per the application of common sense. Ensure that the roller clamp on the line is as close to the bag as possible – you will need to be able to access it.

Step 3: Run the IV line down the limb around 10cm / 4in and cover in a bandage (the broader the bandage, the faster the technique), leave a loop then bandage the IV line back up the limb.

Step 4: Repeat step 3 ending with the free running end of the IV line heading towards the head of the patient (this is where you will be located; if you need to replace the IV bag it’s best if the bag is close to you).

Step 5: Secure the end of the bandage with some tape. Ensure that you leave the side injection ports of the IV line accessible. You may even wish to mark these with tape so that you can find them quickly when under stress.

When you secure the IV line with these superimposed S bends you create 40cm of dead space that will take up the strain on the line if the line is pulled. Once tension is applied to the line the loops cinch together to take up the strain. More of a visual learner? Yeah, me too. See the images below.

Bandage Secure 1

Bandage Pull

What I now know that I wish I knew then is that performing this technique takes no longer than trying to apply copious lengths of tape to a patient’s arm, especially when that arm belongs to a sweaty, hairy person. I also know that I never again want to be the clinician whose handover includes “well, there was an IV in the arm but I kinda lost it in transit…” If it is worth doing, it’s worth securing.

 

Notes:

We bet this isn’t the only way to secure a line. Got tips for us to learn? Then put them in the comments. We like learning.

And remember if you like stuff on here, have a think about sharing it around. And maybe sign up to get an email when a post hits.

Old School/New School – Updating Classic RSI

Respect for the classics doesn’t mean being stuck with them. Here’s a refresher on why you might not want to do RSI like they used to by Dr Andrew Weatherall. This one is a cross post picked up from the paeds anaesthesia site he chips in on, www.songsorstories.com 

Everything in medicine needs the occasional reboot. I mean not as often as Hollywood thinks we need to reinvogorate a superhero franchise but at least every now and then. Sometime that’s because we learn new things (cross reference here). Sometimes it’s because our perception of what is the biggest risk changes (more on that in a second). And sometimes we suddenly realise that the original reason something became fixed practice might not have been a thing in the first place.

Which brings us to RSI, a classic so many of us have grown up with.

What is this thing?

The story of RSI starts with excellent intentions (and for this version of events I’m leaning heavily on this review by the excellent Thomas Engelhardt). In this case the idea was to come up with a safer way to get the snorkel in the all important windpipe as quickly as possible to try and minimise the risk of things that should stay nestled in the gastrointestinal tract might find their way to the lungs.

And you can understand why. Serious aspiration can, sometimes, be deadly. The first piece of the puzzle was written up by Morton and Wylie way back in 1951 who described where with the patient sitting up the anaesthetist would give intravenous barbiturate then muscle relaxant and rapidly intubate them. A rapid sequence of induction and intubation. So really it’s RSII.

8 years later a description emerged of a thiopental/relaxant/40-degree head-up tilt foot-down tilt. It wasn’t for another 2 years that cricoid pressure popped up (thanks Sellick) although interestingly it included not just a bit of pre-oxygenation but also some bag-mask ventilation prior to putting the tube in.

It was another 2 years before the other classic bit of RSII became popular, with an exhortation to avoid bag-masking because of the perceived risk for gastric insufflation and hence regurgitation.

A classic technique derived from a series of “what abouts” and “I reckons”. I mean, you wouldn’t read about it. Except you just did.

That’s not to say that medicine doesn’t have space for a bit of logical derivation of good ways forward. It might just suggest that the whole approach is open to a refresh.

Re-evaluating the Likely

If the technique was designed to prevent aspiration, maybe we should start with looking at how likely this event is in a setting a bit more modern than 1951. In 1999 the epic writing team of Warner, Warner, Warner, Warner and Warner looked at 56138 patients under 18 having procedures (elective or emergency) over 12 years to see just how big this problem was. This covered 63180 procedures.

The time frame for defining aspiration was entry into the operating room until 2 hours post-anaesthetic. To score the label there had to be direct identification of bilious secretions or particulate matter in the tracheobronchial tree or new X-ray findings after an episode of regurgitation.  A total of 24 patients met the criteria.

11 of those were emergency cases so the rate in that group was 1 in 373 compared to 1 in 4544 in the elective cases. 21 of the 24 were around induction. 15 of the 24 had no symptoms develop despite the aspiration. 5 of the other 9 did need respiratory support of some kind and 3 of them needed ventilation for more than 48 hours. Well the paper says that but actually describes ventilation for 18 days, 14 days and 33 days in those cases.

And there’s the rub. It’s really very impressively rare. But then when it goes bad, the downside can be very, very down.

So fine, let’s prevent the bad thing. We’d better get on with the classic old RSII, right?

Remembering the Even More Likely

The problem with being so rigorously focussed on avoiding pulmonary aspiration that you do things like not help the patient breathe, is there are other basic functions that don’t get looked after so well. Like oxygenating.

Gencorelli et al looked at episodes of desaturation during RSI while describing the classic drugs/cricoid/no ventilation technique. Across 1070 children included they reported a 3.6% rate of desaturation to 89% or below (1.7% of the patients being in the under 80% group). Not surprisingly the under 2s were more likely to have a desaturation.

These rates are low of course and certainly lower than in some other areas of practice. Reports from emergency departments have indicated desaturation rates anywhere from 14% to 33% (with the latter reporting rates of desaturation of up to 59% in the under 2s).

So amongst the various things we’re trying to do to prevent the 1 in 400+ event are we at risk of failing on another key thing. You know? The oxygen provision thing.

What’s the alternative?

Neuhaus and team subsequently described very well their approach to RSII, which they badged as cRSII (where the “c” is for “controlled” not some other “c” word like “cheese” which wouldn’t make sense anyway but would be a good reminder that cheese is great).

They key features for them (putting to the side “lots of preparation”):

  • 20 degrees of head up (though they say only for the over 2s)
  • Suction any NG in situ.
  • Give the drugs.
  • Avoid cricoid pressure (with a few exceptions).
  • Provide gentle facemark ventilation with peak pressures of 12cmH2O.
  • Neuromuscular monitoring to ensure the muscle relaxant has really, really worked.

This last point makes a heap of sense as active regurgitation is a problem created by airway instrumentation when you don’t have adequate anaesthesia and paralysis.

cRSII
It’s a big list.

Talk is cheap though, what were their results?

They report on 1001 patients They had a moderate hypoxaemia (89-80%) rate of 0.5% and a severe hypoxaemia (< 80%) rate of 0.3% and the 8 patients this represents had a median age of 0.8 years. They had 1 patient with regurgitation but no evidence of aspiration.

That’s pretty impressive.

Putting it Together

So if we accept that we should really try and optimise oxygenation, and that the risk of this is higher than the risk of aspiration then we have to accept that modifications to that original technique are reasonable. What are a few steps for practically putting it together?

1. Assess that risk of a full stomach

It might well be that we’re going to avoid cricoid most times, but there are still a few situations where that risk of aspiration is probably higher. In the Neuhaus paper they suggested achalasia, Zenker diverticulum or post-colonic interposition patients (done for oesophageal replacement) always need cricoid.

It certainly seems worth having heightened concerns in the patient with significant increases in intra-abdominal pressure.

2. Everyone sits up

Why wouldn’t you have a bit of head up? It makes sense if you’re avoiding passive regurgitation and is a good position for pre-oxygenation, facemark ventilation and intubation. I’m not quite sure why some authors have suggested the under 2s shouldn’t be head up. This is a routine option.

3. Have that suction handy

Goes without saying maybe, but I’m saying it.

4. Pre-oxygenation, but not with distress

Yes you want to pre-oxygenate. And most times you can talk kids through that and get a full 3 minutes in. Some kids will only get more distressed with oxygenation though, and insisting on pre-oxygenation only guarantees distress. Given that you’re going to apply gentle face-mask ventilation, it’s rare you need to go to the wall on this one.

And while I’m there what about apnoeic oxygenation? Well, as discussed in this post, the evidence that’s available in kids isn’t so persuasive as to suggest it should be routine. The stuff that has been done showing extended apnoeic time actually followed effective pre-oxygenation with face-mask ventilation. So as we’re going to put that tube in quickly after the same sort of effective face-mask ventilation, extending apnoeic time for minutes seems not that clinically relevant.

5. Cricoid yes or cricoid no?

Again this is a judgment call. I know plenty of anaesthetists who still prefer to start with it but with a low threshold to remove it. I’m more likely to mostly err on the side of not using it, except for those high risk of aspiration patients.

If you are going to use it, it is worth noting that, particularly in infants, the trachea is quite often more prone to distortion by cricoid pressure than you realise. Doing flexible bronchoscopy work you’re sometimes asked to manipulate the airway and I’ve seen the whole trachea get substantially compressed and distorted by seemingly innocuous manipulation. Distort it enough and you can increase the resistance to air going in and out enough to make it easier to get down to that stomach.

In addition, as covered very nicely in this review, cricoid relies on the alignment of trachea and oesophagus and the evidence is that in kids < 8 years old 45% had displacement of the oesophagus so you’d be unlikely to get compression of the oesophagus even with perfectly delivered cricoid (at least on the CT scanning mentioned).

So for the very high risk ones I’d tend to start with it (well start with it once I’m sure the kids won’t react to it going on), but that leaves almost everyone where I would’t be too concerned. And if it is on, I’d be quick to take it off if it was impeding either view or tube passage.

OLYMPUS DIGITAL CAMERA
Maybe I included this picture of an echidna because they have a reputation for being good at waiting and not because it’s a prickly situation.

6. Wait

We’re going to take our time with face-mask ventilation and maintain oxygenation. So where’s the extreme rush getting the tube in? Being too obsessed with that step, even though you’re achieving oxygenation, is a way to end up instrumenting the airway while the patient is only lightly anaesthetised or inadequately provided with paralysis. What was that thing we’re preventing again? The regurgitation thing that’s worse if we get going while the kid is lightly anaesthetised? Oh, right. Slow down.

The description suggests using a nerve monitor. I can’t say this is routine myself, but once the muscle relaxant is onboard I do publicly note for the team I’m working with how long we’ll be waiting on the clock before we start trying to intubate. (“The clock says 09:30 now. Once it ticks over to 09:32, we’ll start with the intubation.”)

I then remind everyone that this will take an unnervingly boring period of time and they might want to come up with a good joke to fill the time.

7. Ventilating

Yes, this is a thing that’s necessary because kids desaturate quickly. Particularly the younger ones. Achieving gentle face-mask ventilation relies on really good technique with the bag in hand. Plus it’s very therapeutic to gently squeeze that bag.

7. What about parents?

This one also needs an assessment of what might help and what won’t. For lower risk kids, as a paediatric anaesthetist doing it regularly, I’d be comfortable having them along. But if it was the sort of case that was likely to be difficult, or if I was back at the training junior doctor stage, there’d be no dilemma for me. I’d tell the parents that they wouldn’t be coming in. Having them alone to help their child relax (not always a guaranteed result of having parents in) has some advantages. But the prime job is safe management of the peri-induction period. And that might mean less people around.

 

So those are the simple things that have shifted over the course of my time in the big wide medical world. It’s a realignment of the priorities in a way that makes the ‘R’ in ‘RSII’ look smaller and smaller so that the oxygenation is placed at the top of the tree.

Put together though it’s a reboot worth endorsing. I mean the 60s just weren’t that great, surely?

 

Notes:

How many bits that are really important aren’t covered here? There must be some. So leave a comment. We’ll all learn.

And if you like the post and other things around the joint, maybe throw your email in the relevant spot so you’ll get an email each time a new post pops up.

This post is a cross-post from another site that this Weatherall bloke works on called Songs or Stories. It’s about paediatric anaesthesia.

That echidna pic came from flickr’s Creative Commons area and is unchanged from Duncan McCaskills’s post.

Now to the literature, because going to the direct papers is always rewarding.

That review by Engelhardt where he makes it clear what he thinks is this one:

Engelhardt T. Rapid sequence induction has no use in pediatric anesthesia. Pediatr Anesth. 2015;25:5-8. 

The paper by the anaesthetic equivalent of the Brady Bunch or something I assume is this one:

Warner MA, Warner ME, Warner DO, Warner LO, Warner JE. Perioperative Pulmonary Aspiration in Infants and Children. Anesthesiol. 1999;90:66-71. 

The benchmarking study is this one:

Gencorelli FJ, Fields RG, Litman RS. Complications during rapid sequence induction of general anesthesia in children: a benchmark study. Pediatr Anesth. 2010;20:421-4. 

The emergency department studies mentioned in passing for their demonstration of high rates of desaturation are these ones:

Long E, Sabato S, Baby FE. Endotracheal intubation in the pediatric emergency department. Pediatr Anesth. 2014;24:1204-11.

Rinderknecht AS, Mittiga MR, Meinzen-Derr J, Geis GL. Kerrey BT. Factors Associated with Oxyhemoglobin Desaturation During Rapid Sequence Intubation in a Pediatric Emergency Department: Findings from Multivariable Analyses of Video Review Data. Academic Emergency Medicine. 2014;22:431-440. 

That paper looking at controlled techniques in kids is this one:

Neuhaus D, Schmitz A, Gerber A, Weiss M. Controlled rapid sequence induction and intubation – an analysis of 1001 children. Pediatr Anesth. 2013;23:734-740.

And that other review is this one:

Newton R, Hack H. Place of rapid sequence induction in paediatric anaesthesia. BJA Educ. 2016;16:120-3.

 

 

The Bind When It Comes to Using a Binder – Part 5

You might recall a series more than a bit ago from Dr Alan Garner covering lots of thoughts on pelvic fractures and what might make sense for prehospital care. Well, he’s back at it with a case to get things rolling.

It is amazing what you find when you go looking.

Those who are regular readers of the CareFlight Collective will be aware of my concerns about the use of pelvic binders in lateral compression (LC) type fractures.  You can find parts 1, 2, 3 and 4 here.  In short a binder in the context of a LC fracture replicates the force vector that caused the injury and may make fracture displacement worse.  There is evidence of this in both cadaver models and in real live trauma patients.  However blind use of binders without knowing the fracture type (and even where it is known to be LC) has been considered safe as there were no reports that patients had deteriorated after application – until now.

Last year one of our teams applied a binder to a haemodynamically stable patient with a LC fracture.  There was immediate haemodynamic deterioration and new leg length discrepancy which had not been present prior to application of the binder.  The case report has been accepted for publication by the Air Medical Journal and about now would be a good time to say thanks to our co-authors from Westmead Hospital, Jeremy Hsu and Anne Douglas.  You can find a copy of the accepted manuscript accepted manuscript here.  You need to go and have a read of the manuscript then come back for the following comments to make sense so I suggest you do that now.

Go on…

 

I can wait …

 

Continuing…

Now that you have read the case report you can appreciate that this incident caused us considerable angst.  We knew this was theoretically possible but it was still a shock when it actually happened.  It has caused us to review our practice around binders to try and find the safest approach.

But at the same time we need to acknowledge that we live in a space of considerable uncertainty because we don’t have radiographs to guide our management in prehospital care.  All we have is our reading of the mechanism (which is often pretty unclear), the clinical state of the patient and perhaps a finding of pubic symphysis diastasis on ultrasound to guide us.  We have to acknowledge that we are going to get this wrong a reasonable proportion of the time.

So here is our reasoning and the place we ended up.

Firstly we need to remember that there is still no study of any kind (RCT or cohort) that has shown a statistically significant improvement in survival with binders.  There is some suggestive case series data (mostly in anterior compression or “open book” fracture types) and the benefit observed is raised BP and possibly blood product usage, not survival.  That is it.  As it seems we can definitely cause harm, it is worth keeping in mind just how poor the evidence for benefit is as we work our way through the approach to binder application.  One of my very experienced colleagues refers to binders as “pelvic warmers” due to the almost complete lack of evidence of benefit and I can’t tell him he is wrong.

First…

The first thing to consider is the stability of the patient.  Placing binders in stable patients with a possible mechanism has been considered acceptable practice despite the theoretical risks and indeed it is the policy of our local Ambulance service in NSW to do exactly that.

Other services such as Queensland have a more conservative approach.  They position the binder if there is a suggestive mechanism but only tighten it if the patient is unstable or becomes so.  Given that there is absolutely zero evidence that haemorrhage has ever been prevented by placing a binder I think the Queensland approach is a good one.   I know that there are reports of binders reducing fractures so perfectly that they have been hard to identify on subsequent imaging and it is impossible to say whether they would have bled without the binder, but benefit from prophylactic use has not even been investigated let alone proven.  And since we have now demonstrated that you can take a stable patient and turn them into an unstable one the summary of the published evidence now is:

  • Harm from binder application in stable patients = 1
  • Benefit from binder application in stable patients = 0

I acknowledge that prevention of haemorrhage is fundamentally difficult to prove but we have decided to join the Queenslanders.  We will position it in stable patients if we are suspicious but it is only tightened if and when the patient becomes unstable.  First do no harm.  If they are haemodynamically stable you can’t make things better, but you can makes things a whole lot worse.

Second…

Our next consideration as per the previous posts parts 1-4 is the mechanism.  If it is clearly a lateral compression fracture then there is not even a biologically plausible way a binder can help.  If you are doing an interfacility transfer, you have an Xray and it is a LC fracture, do not apply a binder no matter how haemodynamically unstable the patient is.  Every reported case who has had a rise in BP associated with a binder has had either anteroposterior compression (the majority of cases) or a vertical shear injury.  Therefore the evidence base for lateral compression fracture so far is:

  • Harm from binder application in patients with LC injury = 1
  • Benefit from binder application in patients with LC injury = 0.

Just don’t do it.

Now of course prehospital it can be really hard to know what the fracture type is.  But there are occasions where it can only be a lateral compression such as in MVAs where the impact is directly into the patient’s door with intrusion against their pelvis laterally.  Here is an example repeated from part 3:

Crash copy

 

In this case the car has slid into the pole sideways.  The impact is directly into the driver’s door who has been pushed across the cabin partially onto the passenger seat breaking the centre console in the process.  This can only be a lateral compression fracture and that is indeed what was found on pelvic plain film in the ED.  We no longer put binders on these patients, no matter how unstable they are – the binder has no plausible mechanism by which it can improve things.

Third…

The last part of the equation for us was the policy of application by the local Ambulance service which I have already mentioned.  We often turn up to find that a binder has already been applied.  Should we take it off again if stable?  If unstable and it really looks like a lateral compression injury?  The damage if any has probably already been done.  We are operating in an evidence free zone here of course.  Our consensus of opinion was that if it was properly applied we should just leave it there.

So we derived an algorithm which works through these steps in the reverse order that I have discussed them as that is the workflow in the real world:

Binder Algorithm

So the only patients who get a binder placed and tightened are the unstable patients where lateral compression is not likely from what we can see of the mechanism or we just don’t know the mechanism.  If you re-read part 3 this is the group we are suggesting that ultrasound may help in the decision making.  Benefit (in terms of improved BP, not survival) has only been demonstrated in patients with a widened symphysis so perhaps this is your single best clue that you have identified a patient who is likely to benefit from the intervention – if such a group actually exists.

The Wrap

The belief that pelvic binders are a benign intervention is becoming widespread even though there are already reports of serious complications such as massive necrosis from pressure injury (have a look here).  No intervention helps all patients, and all interventions carry risk.  The key is identifying the patients where the benefit outweighs the risk.  Given that proof of benefit from binders does not yet exist, think very carefully about the risk that you could make things worse by tightening it and converting a stable patient into an unstable one.  Use it only where the possibility of benefit outweighs the risk and there is just no possibility of benefit in a known lateral compression injury.  It can therefore never be justified if you know that is the injury type.  Similarly there is zero evidence of any kind for prophylactic use in stable patients, just a theory and even the theory does not make sense in lateral compression.

I find it difficult to believe that this is the first time a patient has deteriorated with a binder – we are just the first group to report it because we have been looking.  Complications are typically poorly reported in prehospital care for a number of cultural reasons (see Davis’ classic work on prehospital intubation where significant complications were picked up only by examining the monitor output; it was not reported by the clinicians).  Perhaps the temporal relationship between the binder and deterioration is not as clear as in this case, or the patient is already unstable and it is not possible to differentiate the additional bleeding caused by the binder from the bleeding that was already happening.  Or the subsequent instability is not attributed to the binder by the caregivers who think “just as well we put the binder on” without realising they actually caused it.

We would be really interested to hear if anyone else has observed this too.  But you won’t notice if you don’t look.  In the meantime I think we all need to examine our practices to ensure that are only applying the devices where there is a possibility that the patient will benefit from this as yet unproven intervention.  If there is no possibility of benefit, just don’t do it.

 

Notes:

You could always start with public cases like this to reflect on what we could do differently with pelvic binders.

Here’s the thing on the pressure necrosis with a pelvic binder again:

Mason LW, Boyce DE, Pallister I.   Catastrophic myonecrosis following circumferential pelvic binding after massive crush injury: A case report doi:10.1016/j.injury.2009.01.101

And if you’re interested in the stuff on this site you can always find the spot on this page to get your email in there

Look Back at Analgesia

It seems like a simple thing that’s a given – delivery of good analgesia. Except for the bit where good clinicians fail over and over at this. Here’s Dr Alan Garner checking out a recent study from the Swiss that looks at some of the holes. 

As prehospital clinicians I think we all aim to provide as technically sound and evidence-based management as we can.  This is a given but when I think about what I would like for my own family or myself I also want “care”.  This is what makes health care interactions more than just an exchange of services for money. And this is what sends me crazy when I hear patients described as “clients”.

But I am digressing.  A major component of care is the relief of suffering and the most common form of suffering we see in the prehospital world is pain.  Good pain relief early might not change the patient’s probability of death in the longer term but it might well change functional outcomes such as symptoms of post traumatic stress disorder.  But most of all we should do it, and do it well because we care.

There have been a lot of studies published about management of pain in emergency departments and it almost always looks bad.  People with obviously painful conditions either not getting analgesia, getting it late or not getting enough.  Given that the most common single presenting complaint to emergency departments is pain of some kind, I would argue that a fundamental KPI of good emergency care should be time to adequate pain relief and this should be reported above the 4 hour rule, access block and any other process indicator.  Waiting for a bed for hours is regrettable but waiting for hours in agony is simply barbaric.

If EDs are doing it badly you can be reasonably confident that prehospital is worse given all the additional constraints.  A new study has just been published by the guys from REGA (Swiss Air Ambulance) building on some work they have done previously around the prehospital analgesia question.  The work arose from a quality assurance project on analgesia that they have been conducting across their organisation to try and improve pain management and they are much to be commended for sharing their work on this.  They have allowed us a view into their struggle so we can learn from them.

And it has been a struggle.  In this new study they documented that one in six patients with moderate to severe pain (defined as >3 on a 0-10 numerical rating scale as reported by the patient) did not get any prehospital analgesia at all!  This is even more noteworthy given that the physician documented the pain score of >3 at the scene but apparently did not act on it for some reason.  One clue might be that a predictor of inadequate analgesia was shorter scene times and more severe injury (higher NACA score).  I was wondering if hypotension therefore might be one of the drivers for no analgesia but “circulation insufficient” was pretty uncommon being present in only 13 of the 778 conscious patients in this study (this stuff is in Table 1 in the paper).

 

Local Stories

Several years ago we audited the analgesia given to children by our own service.  In some cases we did not give analgesia for clearly painful injuries (like bent long bones) but there was evidence that the road paramedics who had been there ahead of us had done so.  There is no mention of this occurring in the Swiss study.  Perhaps this might partially explain the lack of analgesia given if this is also occurring in their system.  Although even if this did occur the physicians still documented pain scores >3 whilst the patient was in their care which you would have thought would prompt further analgesia.

I am not meaning to be too critical here.  In the audit of our own service that I mentioned we also found cases with clearly painful injuries and no record of analgesia given by road paramedics or our doctors.  This prompted a major rethink for us in our approach to analgesia in the field including formally recording pain scores on our observations chart to prompt our teams to keep this front of mind.  Analgesia is also included as an item in all our Carebundles for traumatic conditions, and for intubated patients regardless of the underlying pathology.  One of the risks for inadequate analgesia identified in this new study was that the patient had a non-trauma problem.  It might be timely for us to review our Carebundles for non-trauma conditions too.

Digging Deeper

Another risk factor for inadequate analgesia was severe pain from the outset (score 8 or more).  In this situation it seemed a single agent just was not enough.  Judicious use of small amounts of ketamine in addition to the opioid appeared really useful here.  And it appeared the combination was better in severe pain rather than just ketamine as a single agent.

I am also a little surprised about the narrow modes of delivery utilised with all analgesia given IV.  In our system the nasal route for fentanyl is used frequently particularly for children and it works a treat.  I also think that regional blocks have a place, particularly where the injury mechanism and your exam indicate that the injury is confined to a limb and the situation is not time critical (the time it takes is probably the major contraindication prehospital).

We have recently formally introduced fascia iliaca blocks to our service.  There are lots of other blocks you can utilise , particularly if your service carries an ultrasound machine with an appropriate probe for nerve localisation.  This is a skill you are unlikely to learn prehospital (except perhaps for femoral or fascia iliaca blocks) as you will never do enough of the other types to develop any skill.  If part of your practice is in the hospital context where you can get lots of practice however, these are well worth learning.  Done well they can completely remove the need for parenteral opiates.  The context that we have used regional blocks (other than femoral or fascia iliaca) is in limbs trapped in machinery.  Not a common circumstance but a useful tool to have in the box when it occurs.

The Other Bits We Rarely Look At…

I don’t think this was the aim of this study but it would also have been nice to see some attention paid to non-pharmacological methods of pain management.  Good splinting and packaging is the obvious first line for prehospital services and is one of the basics that is worth doing well.  We don’t carry hot or cold packs in our service due to the weight, but they are available from our local ground ambulances.  These can also help in the right patient.

Plus a Slightly Unexpected Elephant

And lastly they claim a slightly unexpected elephant is in the room.  Treatment by a female physician is reported as being associated with a higher likelihood of arriving at hospital with inadequate analgesia.  To be honest I’m not quite sure what made them look at the gender of the practitioner but there it is, written up. Before anyone assumes this was some situation induced by most of the patients being middle-aged blokes, it wasn’t about the patient gender at all.

IMG_5815
An actual elephant not in a room as opposed to the elephant in the study that is probably not an elephant. 

So what is going on? I can’t quite figure out why this would be the case although the Swiss group has documented this previously in their own system.  Is this a Swiss peculiarity or is it more wide spread?

Well to me it looks like there are a few holes in the information provided that make me wonder if it’s a blip rather than an actual pachyderm. For example non-trauma patients were more likely to arrive at hospital with insufficient analgesia than trauma patients. I can’t construct what proportion of those patients got a physician of a particular gender by chance from this report though. Could it be that the real issue is that clinicians interpret the significance of pain differently based on the context or mechanism? If it’s “medical” pain rather than traumatic pain do we tend to wait for the medicine to fix the medical, rather than treating pain separately? There’s at least one confounder for you without even trying so I’m not convinced a strong case is made that provider gender is a crucial determinant of analgesia efficacy.

A question the physician gender stat does raise that is beyond the scope of this study is the need to consider the particularities of the provider in the mix. Beyond breaking things into much larger groups (like physician vs paramedic) I don’t recall seeing much on what characteristics of a clinician make them more or less likely to provide the good juice. If we don’t understand biases that might be in play I’m not sure we can do the most effective job of changing practice.

 

The bottom line – be obsessed with good analgesia.  It’s easy to get obsessed with all those interventions we think of as advanced, but the long-term quality of life of patients will probably be equally influenced by getting this bit right. Use a multimodal approach rather than just the parenteral one.  Combine agents if severe pain requires it.  Consider local and regional blocks if you have the skill.

And if anyone can figure out if the physician gender difference in this study is a blip or a real thing of some other sort hidden somewhere in the unreported elements, I’d like to know.  It’d be good to show that elephant the door.

 

Notes:

Yes. That’s a real elephant and the photo is via @AndyDW_

Oberholzer N, Kaserer A, Albrecht R, et al. Factors Influencing Quality of Pain Management in a Physician Staffed Helicopter Emergency Medical Service. Anesth. Analg. 2017.