Category Archives: Uncategorized

Kids Prehospital Care Here and There

This is the written version of a talk by Dr Andrew Weatherall for the South African Society of Anesthesiologists Congress 2017, just held in Johannesburg. It’s probably just about the shiny things. 

You probably figure that a talk on prehospital paediatric medicine in Sydney should be about shiny pictures of that thing we call the coat hanger. Or maybe actions shots of this character …

IMG_5023
Morning BIF.

And of course there are a lot of cool things we can do in prehospital paediatric care. Maybe the best thing to do is to start with a story. It’s a story of a kid we’ll call B.

Lazy Mornings

One of the odd features of Sydney is that on its edges there are some areas that are essentially rural. They’d take an hour or so to drive to from the CBD, but are probably only 10-15 minutes flight from the base.

One day, a Monday I think, on one of the properties out that way there’s a Dad watching cartoons with a couple of his kids. They want to keep hanging out and he has a bit of work to do moving some earth so he heads out, kids parked firmly on the couch and closes the door behind him.

In the truck he starts to manoeuvre to turn it around. Back. Forward. Back with a glance at a side mirror and he sees legs. They look like the legs of his 4-year-old and they are sticking out from under the wheels.

I imagine the seconds it took to reach her felt like a long time. I imagine the wait for help to arrive felt a lot longer.

Things That Aren’t Common

The weird thing about being an Aussie talking about trauma in South Africa is that I am not talking about something that is common to us. Most of the audience would laugh at our numbers. The NSW Institute of Trauma and Injury Management published some stats from the 2015 annual review and across the whole of NSW there were 3970 major trauma patients. The busiest adult trauma centre would see a bit north of 600. Across the state the kids’ hospitals would see less than 200 severely injured kids between the three of them.

So I should pack up and stop talking I guess?

Well I guess the thing we could reflect on is that if you can’t rely on exposure to numbers to get everybody better and produce better outcomes there are other things you can focus on. You can start with the system to make the response bring the hospital to the patient quicker. It’s over an hours drive back once anyone gets there.

That day the NGO I spend time with was called about B and was airborne in minutes to get to her. This ability to get in the air quickly came from a trial to look at ways of getting care to patients quicker where every second that could be cut down was thrown in the bin.

The perpetual question we are asking is “what can we bring to the accident scene that will make things better?”

Untitled3

Change the Scene

Let’s imagine a different version for a minute. Let’s imagine in the perpetual construction site that seems to be outside most hospitals, this happened out the front door of where you work. What would you offer this kid?

My expectation is you’d rapidly assess for exsanguinating haemorrhage. You’d work as quickly as possible to ensure A, B and C are adequately sorted and you’d get analgesia on board. You’d image, transfuse if you need to, consider tranexamic acid and splint any fractures.

If oxygenation and ventilation means anaesthesia, intubation and ventilation (maybe even chest decompression) you’ll do that. You’ll assess and reassess as things evolve, operate where it’s really needed and keep making new plans to cope with a dynamic situation.

So here’s a question to consider – which one of these should we forget about while the patient travels by road for an hour to reach the front door of the hospital? If you’re the anaesthetist up in theatres who will meet them later, which ones do you not want to have been looked at early?

We can take almost anything we want to the scene. Helicopters carry stuff. So we take with us all the equipment for advanced airway management, a small ventilator and oxygen in our backpack. We can decompress chests. We can splint. We can ultrasound, tourniquet, pack wounds with haemostatic agents, give tranexamic acid and transfuse. We have to get there of course.

And on this day the team did. They were confronted with a child looking more than a bit pale and cool peripherally. Her HR was 140 and above with a brachial pulse palpable. Her GCS was 9/15. Her injuries were apparently below the umbilicus but looked like they included a fractured pelvis and right femur. She had been eviscerated and had a large skin flap extending from the front of the abdomen all the way around her back. She was still under the truck.

Over the next 50 minutes or so, the team obtained intraosseous then intravenous access. They performed a controlled rapid sequence intubation. They splinted fractures and covered up defects. They delivered warmed red cells. They got her to the hospital. She was fairly stable through the emergency department and then the operating theatres. She made it to PICU.

She made it home.

Cool story, huh? But also really irrelevant if you’re talking at a conference in a different health setting, right?

Another Change of Scene

What if this happened in Cape Town? Which team would turn up then. The dispatchers are likely not to have medical background. An activation of advanced teams will happen some time after the sent team gets there. The team that first arrives will have paramedics with variable levels of training. They might not be able to give a range of stronger analgesic agents. They will have more limited options for airway management. They are likely not to feel as comfortable with cannulation in kids as in adults.

The kid gets what they get.

The thing is, I could be describing the same back in Sydney. I gave you a story from the system on a good day. We know a system like that is there but we don’t really offer it. Most days our kids will get teams that finds kids really challenging (because they are of course).

Getting the Team There

How do I know this? Well we looked.

A while back CareFlight was running a randomised trial to try and activate advanced teams to patients on the basis of the initial information that gets called in using a strict protocol. The trial applied to adults but we were asked to offer it to kids as well.

The crew (doctor/paramedic/pilot/aircrew) next to the helicopter had access to the screens and took it in turns to match the high acuity calls to tasking criteria and even to call back for more info if required. A decision to get in the air, cross-checked with central coordination for kids) had to be made within about 5 minutes of the start of the call.

For a while the systems (crew watching and central coordination watching) operated alongside each other. So we had a look at how that worked out. Over a period of time where the Sydney area had 44 severely injured kids, on that initial info the advanced care crew picked up 20 of them. The central guys looking noticed 3.

The numbers are obviously small (not much trauma, remember) but when the crew were watching and going to jobs it also made differences to the system. As they always brought kids back to the kids’ trauma centre, the time to get there averaged 92 minutes. When they were not available (on another job or offline) that time became 296 minutes. That’s for a few reasons but in no small part to some of those patients getting taken to other hospitals and waiting for transfer.

So there’s one thing you can do for your more trained up teams without much infrastructure required to get the right team there.

And I hope someone picks it up because in Sydney they abandoned it. At the end of the trial the screens went.

Another Look

So we had another look to see if the system had picked up the slack. We looked at the time when the advanced crew had the screens and the time after that. These were longer time periods (34 months in the first epoch and 54 months after which equated to 71 severely injured kids before and 126 after).

In the first 34 months the collaborative system picked up 62% of those severely injured kids and the average time to hospital was 69 minutes. In that latter period, with centralised looking alone, 31% of kids were triaged to advanced care, the version of care the system says it wants. The time to reach the kids’ hospital averaged 97 minutes.

You can imagine that this is something I find … disappointing.

But you might also be thinking “If you are suggesting I try and change a whole system then you are an extremely crazy person affected by anaesthetic gases that have rotted your brain because that will involve meetings, and talking to people who do politics and some of those people will expect me to wear ties and that is not why I got into anaesthesia”.

And that is fair.

But a much as I’d love us to do things about systems there’s something we could all focus on right now to try and make a difference.

If the system is mostly going to send the “not pointy end” part of the system, then we should also look at the care most of the kids will receive.

The Big Story

Every talk on prehospital stuff by a doctor can end up being mostly about the really sharp edge. But in NSW less than 1 in 5 kids ever see the advanced care team. So the biggest bang for our buck is in making sure all the kids get access to prehospital clinicians who feel confident working with kids and give them what they need on indication, not influenced by age alone.

When we focus on the pointy end the chances for gains are pretty marginal. Let’s look at intubation for example. Advanced EMS practitioners in Switzerland have published on their efforts and the highly trained and experienced professionals mostly get the tube in without incident but almost 1 in 5 kids had the wrong-sized tube and the majority were placed too far down the airway. Bringing up the whole of the prehospital provider group to a level above Swiss advanced EMS is probably a pretty big effort.

Particularly when you look at stats like those from Prekker et al looking at a big EMS system in Washington where intubation was an option. A paeds response happens for them in 1 in 2198 callouts (there were 299 in total in 6 years spread across all the practitioners). Their first pass success was 66% (though they did eventually get there in 97%) and 10% of the patients needing intubation needed 3 or more attempts.

And I can’t tell you what the oxygenation was like through that and really oxygenation is the name of the game.

The simple truth is kids get a raw deal at the pointy end. Everyone finds them tougher. Bankole et al compared kids receiving high level EMS care around New Jersey with a severe traumatic brain injury and compared them to the adults being looked after by the same really well trained first responders.

20% of kids with a GCS under 8 had no attempt at airway intervention. Of those intubated 69.2% had complications and 29% (vs 2.27% in adults) had a failed intubation. Even cannulas were placed in only 65.7% vs 85.9%.

It starts making you think that if those of us in prehospital medicine looked harder at the thing we want to achieve, oxygenation, rather than interventions that sometimes can do that but have big potential complications we might be able to change things for a bigger population of kids.

Recalibration

Although there are problems drawing on battleground experience in civilian trauma care, particularly in kids, there is a quite interesting paper from Sokol et al. looking at the Camp Bastion experience with 766 kids with traumatic injuries. 20% of them needing some sort of intervention and circulation measures (particularly stopping bleeding) was the most effective. Simple airway manoeuvres were done not often enough and interventions for breathing (like chest decompression) were a lesser order issue than circulation issues.

So perhaps what we should focus are things we could train more people in and more prehospital providers of all experiences could deliver:

  • Recognising the sick kid.
  • Stopping haemorrhage effectively.
  • Assessing A and B and delivering effective bag-mask ventilation.
  • Cannulation and appropriate fluid use.

Recently we’ve done some focus group work at The Children’s Hospital at Westmead with clinicians who do paediatric airway management and one of the strong themes emerging as we write up is that all of them rate airway assessment and bag-mask ventilation as the most vital skill they want to be good at and they’d like to pass on.

There are all sorts of interesting hints here. Hansen et al conducted an exploratory study in 2016 to look at how well paramedics recognised and treated in croup. After whittling through records their small study looked at 14 patients with a primary upper airway issue. 8 of the patients had “stridor” or “croup” explicitly noted in the tasking or information noted by the responding paramedics. 6 had trigger words like “barky cough” or something pretty convincing. All of them received salbutamol, not the nebulised adrenaline or other treatments on offer.

But Some Things are Easy, Right?

Analgesia though, that might be an easier target because relieving pain in kid sis a no brainer.

Well, no.

Samuel et al. published a systematic review of evidence looking at analgesia provided by prehospital providers for kids in 2015. In it they describe a review of 55642 patients where 26% of the kids had trauma and another 16.1% of kids had a primary complaint with significant pain.

0.3% of the kids were given any analgesia.

There were other studies included reporting rates of analgesia administration for fractures of 2.1-3.2% (and at  least one with 0% in the under 5s with fractures).

What is going on?

Well sometimes there might be limitations in what the paramedics have available (e.g. opioids or not, ketamine etc). One physician system showed 92% getting given strong analgesia in these sorts of patient groups.

There may be a fear of drug errors because there is work suggesting issues with drug dosing in kids in more than 30% of prehospital cases.

However Rahman et al have also done work exploring the perceptions of paramedics in providing analgesia to kids and showed very high levels of reported discomfort with providing and assessing analgesia in kids. More alarmingly 25% of respondents indicated that kids needed less analgesia because of immature nervous systems.

These are not small chips either. Schreier et al looked at PTSD symptoms after just mild to moderate trauma (things like isolated fractures) in kids. At 18 months (in an admittedly small study) 38% of the kids they looked at had at least mild symptoms.

PTSD in kids expresses itself as poor attendance at school, missed marks in education and social disengagement.

While < 4% of kids are getting analgesia for obviously painful things, there are things we can tackle that don’t need a rapid sequence intubation and a snorkel.

What is the cost?

So the cost to patients will undoubtedly be big if we are sending teams who don’t feel comfortable in kids, but is the cost of addressing it prohibitive.

I reckon not. Here’s one example.

CareFlight, that little charity I mentioned, has started to treat education of first responders as a way of providing service to the community. By taking simulation education and courses mobile to rural and remote first responders maybe we can make the first person who turns up to the injured just that little more comfortable that there are things they can do.

Uluru 3.JPG
The MediSim crew in action next to a big red rock.

Since 2011 they’ve reached almost every state in Australia and trained more than 3000 people. Participants don’t pay.

In the Western Cape there is an EFAR program that would be worth checking out that is seeking to enhance the response of first-aid responders.

But if you’re an anaesthetist or other critical care provider, then there would have to be ways for you to link up with local prehospital services and offer to help paramedics gain skills and experience.

Everyone in the room (or reading this) can probably provide analgesia. Everyone has seen a sick kid. Everyone knows how to splint and work on stopping bleeding. In particular I am full of a room of people who have exquisite skills in things we think of as basic, like bag-mask ventilation, but could be the difference between a patient being oxygenated on the drive in, or obstructed the whole way.

The Wish List

If you’re the anaesthetist waiting in that operating theatre when an injured kid is on the way, what’s on your wish list?

Mine would include the patient being identified and getting to me as quickly as possible. I’d hope the team that reaches the patient can recognise if they’re sick and keep reassessing well. I’d hope they felt confident managing the airway and could optimise oxygenation as much as their skills allowed. I’d love it if they turned up with some form of intravascular access and some analgesia on board.

The priorities to start making that happen for more patients is actually not about BIF with the noisy rotors. The priorities are the same if you’re looking at an old bridge across a harbour. Or some mountain near the sea.

Damien du Toit Table Mountain

Or a downtown area closer to the sky.

Paul Saad Jo'burg.jpg

Notes:

I cannot express the depth of my gratitude to the patient and family who have granted permission for the use of their story as part of education in this area.

Thanks also to the clinicians involved in the case, Dr Rob Bartolacci and Ben Southers, super paramedic, for background on their case and the shot from the sky that day.

A huge thanks also to the brilliant Jo Park-Ross, Flight Paramedic from AMS in Cape Town and Ross Hoffmeyr, an anaesthetist also working in this area down in Cape Town for helping me understand more about the local system and checking my work.

A shout out too to Colin Brown and Greg Brown (no relation) at CareFlight for the stuff about the MediSim program.

As part of the invited faculty the organising committee covered travel, accommodation and registration for the conference.

The images of BIF and Sydney are from my personal collection. Other images are from the Creative Commons area of flickr and are unmodified here. Paul Saad posted the shot of Johannesburg and the shot of Cape Town is by  Damien du Toit.

Right, now the things to read…

Here are the trauma stats in NSW for 2015:

NSW ITIM Trauma Stats 2015

Here is the Head Injury Retrieval Trial:

Garner AA, et al. The Head Injury Retrieval Trial (HIRT): a single-centre randomised controlled trial of physician prehospital management of severe traumatic brain injury compared with management by paramedics. Emerg Med. J. 2015;32:869-75.

Here are the tasking studies:

Garner AA, et al. Physician staffed helicopter emergency medical service dispatch via centralised control or directly by crew-case identification rates and effect on the Sydney paediatric trauma system. Scand J Trauma Resusc Emerg Med. 2012;18:20:82.

Garner AA, et al. Physician staffed helicopter emergency medical service case identification – a before and after study in children. Scand J Trauma Resusc Emerg Med. 2016;24:92.

The Swiss study:

Schmidt AR, et al. Ease and difficulty of prehospital airway management in 425 paediatric patients treated by a helicopter emergency medical service: a retrospective analysis. Scand J Trauma Resusc Emerg Med. 2016;24:22.

The thing by Prekker et al.:

Prekker ME, et al. Pediatric intubation by paramedics in a large Emergency Medical Services System: Process, Challenges and Outcomes. Ann Emerg Med. 2016;67:20-29.e4

And the first responder TBI comparison:

Bankole S, et al. First responder performance in pediatric trauma: A comparison with an adult cohort. Pediatr Crit Care Med. 2011;12:e166-e170.

Here’s the battlefield stuff:

Sokol KK, et al. Prehospital interventions in severely injured pediatric patients: Rethinking the ABCs. J Trauma Acute Care Surg. 2015;79:983-9.

The thing on assessment and treatment of upper airway obstruction by paramedics, which is exploratory but interesting is here:

Hansen M, et al. Paramedic assessment and treatment of upper airway obstruction in pediatric patients: an exploratory analysis by the Children’s Safety Initiative – Emergency Medical Services. Amer J Emerg Med. 2016;34:599-601.

Now here’s that analgesia review that is a sobering read:

Samuel N, et al. Prehospital pain management of injured children: a systematic review of current evidence. Amer J Emerg Med. 2015;33:451-54.

Here’s the thing about comfort level of paramedics in providing analgesia to kids:

Rahman A, et al. Emergency medical services provider comfort with prehospital analgesia administration to children. Prehosp Disaster Med. 2015;30:66-71.

Plus that little PTSD study:

Schreier H, et al. Posttraumatic Stress Symptoms in Children after Mild to Moderate Pediatric Trauma: A Longitudinal Examination of Symptom Prevalence, Correlates, and Parent-Child Symptom Reporting. J Trauma. 2005;58:353-63.

If you wanted to get a little more info on that mobile simulation training CareFlight do here’s a link.

Tactical Medicine in the Civilian Setting – Part 3

The third and final instalment of this series has been a while coming. Nothing to do with being tactical just because “reasons”. Here’s Mel Brown following from part 1 and part 2 with, yes you guessed it because of precedent and it was written at the top there, part 3. 

In part one of this series we looked at what tactical medicine is, some of the history of tactical medicine (both military and civilian) and the three preventable causes of death within the tactical environment. In part two we looked at some of the models of infiltration for medical teams, specifically the “whos, hows and whats” of this topic. Now in part three we will look at the three phases of care as set out by the Committee for Tactical Emergency Casualty Care (C-TECC).

Not just “what” but “when”

Medical intervention is vital to saving lives in the tactical environment as 90% of tactical deaths occur prior to the casualty reaching a medical treatment facility. However, these interventions must be performed at a tactically appropriate time otherwise more injuries may be sustained and potentially more lives potentially lost. This is why the three phases of care (as set out by C-TECC) guide when certain interventions should be attempted.

Conventional EMS protocols don’t account for unsecure or high threat scenes and are solely patient focused without any acknowledgement of the surrounding operational or tactical constraints other than to assess for danger during the primary survey. This is why the C-TECC guidelines were developed; they guide patient care whilst taking into account the operational requirements of a high threat environment.

C-TECC guidelines should be seen as “guiding principles”; they are not rigid or inflexible like some current civilian EMS protocols. The three phases of tactical care are dynamic, often overlap and rarely work in a linear or isolated fashion. This is why it is so important to have a clear understanding of each phase so that fluid movement between phases is possible.

The Three Phases 

There are three distinct phase of care within the tactical environment that guide which treatment should be applied when. The three phase of care are:

  • Direct Threat Care
  • Indirect Threat Care
  • Evacuation Care

For those of you with a military background you may be used to these three phases being called:

  • Care under Fire
  • Tactical Field Care
  • Combat Casualty Evacuation Care

C-TECC changed the titles of each phase to ensure that they could be easily used in all high threat situations within the civilian setting. A high threat situation is not just the kinetic one (active shooter, blast) but includes building collapse, multi-vehicle accidents, natural disasters or even the rapid advancement of fire.

Let’s dive in a little deeper.

1. Direct Threat Care

The direct threat care phase exists whilst there is a continued threat directed towards both casualties and other personnel and the risk of further injuries and / or deaths is very high. Treatment during this phase is focussed on minimising further harm, accomplishing the mission, neutralising the threat and stopping catastrophic haemorrhage. There are minimal medical interventions delivered to the casualty in this phase. This is a foreign concept to most medical personnel.

The medical care provided in this phase is limited to controlling extremity haemorrhage and removing the casualty from the point of injury. This care can either be delivered via self-aid or buddy-aid. If the casualty is able to self administer first-aid then this should be encouraged so that the medical responder can care for the casualties that are unable to treat themselves.

A big part of the care in this phase may be simply assisting the casualty to a point of cover; after all, the casualty should never (look maybe that should be in capitals because never, never, never) be treated in an exposed area. Don’t treat on the street.  It is important to think about the choice of cover….good concealment doesn’t always equal good cover.

concealment

Early haemorrhage control is critical in tactical medicine as it accounts for the largest statistical group of preventable deaths. The C-TECC guidelines recommend rapidly controlling extremity haemorrhage in this phase and this usually defaults to the application of an arterial tourniquet. It is important to remember that any medical interventions in this environment need to be balanced with operational risk. This means that sometimes we can’t provide all the care we would to our patient it we were in a non-tactical environment.

Applying a windlass arterial tourniquet can rapidly, easily and effectively treat extremity haemorrhage. There are two such arterial tourniquets widely used in Australia and approved by the TGA – the SOFFT-W and CAT (and remember that first post in the series had a bit on tourniquets). Be aware that the latest CAT is a generation 7 and has some differences to the generation 6 – equipment familiarity is a must.

The arterial tourniquet must be applied as high as possible on the limb and over clothing as it is tactically unsound and time consuming to remove clothing to look for all wounds on the extremity within the direct threat care phase. The aim of treatment within this phase is to keep the blood where it needs to be! In simple terms if you don’t keep the red stuff on the inside then you may as well not bother with anything else as the best blood for the casualty is their own. Don’t forget to mark your casualty’s forehead with the universal sign for an arterial tourniquet, that being a “T” and the time.

Direct pressure should be considered if the environment allows it or if the casualty can apply direct pressure by him or herself. Applying effective direct pressure is time consuming and reduces the medic’s ability to treat multiple casualties. Haemostatic dressings are not considered in this phase and are deferred to the indirect threat care phase, as they require time to work (3 – 5mins of continuous pressure). This is why arterial tourniquets are seen as the most effective and rapid intervention for extremity haemorrhage within the direct threat care phase of the tactical environment.

The only other brief consideration in this phase is to airway. Put simply, this means that you may place the casualty in the recovery position when moving them to a safer position but only if it is tactically appropriate to do so and can be rapidly achieved (this is not a formal assessment of airway – it is simply positioning).

2. Indirect Threat Care Phase

The indirect threat care phase evolves once the responder and the casualty / casualties have moved to an area of relative safety. This relative safety may be provided by structures such as a wall, building, car etc. or by the presence of a tactical security force. Either way the tactical medic must maintain situational awareness whilst treating the casualty / casualties as the environment is dynamic and can change back into a direct threat situation rapidly and at no notice. Always be prepared to move instantly…..this means do not open all of your pack up and spread it out!

In some situations consideration must be given to the disarming of casualties, both friend and foe. If the casualty is unable to sufficiently control or secure his or her own weapon then the medic needs to render the weapon safe and remove it from the casualty. This action is paramount if the casualty is showing signs of altered mental status or head injury. This helps ensure the safety of you, other personnel and the casualties.

If there are multiple casualties then the tactical medic needs to complete a rapid triage that will sort the casualties into three simple groups:

  • Uninjured and / or capable of self-extraction
  • Deceased / expectant
  • All others

The uninjured or capable of self-extrication group should be encouraged to self-aid. This group (if able) may also assist in applying first-aid to other injured casualties. The deceased / expectant group should (if tactically appropriate) be placed away from the core group of casualties that are receiving care.

The “all others” group should be assessed using the C-ABC acronym (Catastrophic haemorrhage – Airway, Breathing & Circulation). The casualty / casualties need(s) to be reassessed to ensure that all interventions performed in the direct threat phase are still effective and needed as well as assessing for any unrecognised haemorrhage.

Removal of clothing and protective equipment should be kept to a minimum. However, the tactical medic needs to ensure that life-threatening injuries are not missed. Therefore, they must check under clothing, body armour etc. and ensure they inspect the casualty’s back.

Because body armour and clothing should not be completely removed (it is required in order to provide continued protection for your casualty) the casualty should be assessed for further injuries by firmly raking the whole body. When assessing under body armour only unclip one side of the armour and lift up (don’t completely undo or remove). Raking allows for identification of unseen wounds as the fingers will fall into divots due to the firm pressure being applied.

Haemorrhage control within this phase may include:

  • Direct pressure methods (an emergency bandage is useful for this);
  • Tourniquets for undiagnosed extremity haemorrhage; and,
  • Haemostatic dressings for non-compressible haemorrhage.

The emergency bandage is a useful tool within the high threat environment as it can be applied rapidly and ensures direct pressure is applied to compressible haemorrhage (See the picture below). The combine found within the bandage has a rumoured capacity of 400mL (note: our experience is closer to 250mL – which is still a lot!) and the pressure device can apply up to 13.6kg (30lbs) of pressure onto a wound.

emergency-bandage
Probably a pretty effective way of soaking up spills around the house too.

If you don’t have such a device available or you run out of resources it is extremely simple to improvise this device by following the four steps below:

4-steps

For further information on direct pressure methods you could link at the post that is totally on that right here.

Haemostatic dressings are an effective method of controlling non-compressible haemorrhage, compressible haemorrhage not amenable to tourniquet use or as an adjunct to tourniquet removal (if evacuation times are anticipated to be prolonged). Currently there is only one haemostatic dressing approved by the TGA for use in Australia, this is called QuikClot Combat Gauze.

QuikClot Combat Gauze is impregnated with kaolin, an inert mineral found in some clay, specifically clays from tropical areas. Kaolin is a potent activator of contact (intrinsic) clotting pathways that accelerates the initial onset and speed of clot formation. Further information on QuikClot and its use will be available on the Collective as part of a future post of the ongoing series titled “I Wish I Knew Then What I Know Now!” If you want information sooner our Education team would be happy to share its one page handout – contact them by leaving a response to this blog.

What about the Airway?

Airway management in the high threat environment must be high yield and take minimal time to implement. That means the intervention might be as simple as applying a jaw-thrust or positioning the casualty to open the airway. The position chosen for the casualty (recovery or seated position) will depend on a few things, some of which include:

  • The current tactical situation (this has a massive impact on what position may be used for anyone as it may not be safe to sit your patient upright).
  • The conscious level of your casualty (unconscious vs conscious but with airway concerns).

The only piece of plastic that is considered in the high threat environment is a nasopharyngeal airway (NPA). NPA no longer has the contraindication of basal skull fracture…..believe it or not. It is now considered a relative consideration when basal skull fractures are suspected (or known). I put to you that the reason why one or two have been caught on CT or x-ray in the wrong spot is purely and simply due to poor technique. The best tip I can give you here is aim in the direction of the ears NOT the eyes!!!

NPAs are far more useful than Oropharyngeal Airways (OPA) in an overwhelming situation where you are unlikely to remain solely with one casualty. NPAs allow for airway support through all stages of unconsciousness to consciousness, unlike the OPA that will be spat out by the casualty as soon as their gag reflex returns (but not always with a return of complete airway control by the casualty).

And getting on to breathing …

Assessment of breathing cannot always (actually put it in the “rarely” category) be done through the traditional means most healthcare professionals are used to in the hospital setting. The ability to listen to breath sounds is diminished considerably due to noise, protective gear (body armour, clothing) etc. and the fact that an ongoing tactical situation is likely to be noisy. Therefore, it is important to remember to use your observation skills and sense of touch. Assess the quality of the chest wall movement – is it equal, does the left side look the same as the right side, is it moving as you would expect?

It is important to assess the casualty’s chest and back thoroughly. This is the only way you can be sure that there are no open chest wounds or obvious chest injuries. So make sure you lift up body armour then look, feel and rake firmly to ensure you don’t miss any injuries!

If during your assessment you find an open chest wound it is important to cover the wound with an occlusive dressing. The general rule of thumb is any wound between the umbilicus and the shoulder should be covered with an occlusive dressing. There are many commercially made chest seals on the market (e.g. Ashermans, Halo, Russel etc.) or you can used improvised ones – one improvised seal that is usually readily available is defibrillator pads. No matter what you use, just make sure it sticks and that you have cover both the entry and the exit (if there is one) wounds.

An important point to remember is that even if you use a vented seal, it is likely to clog up with blood or fluid quickly. This means it will lose its ability to allow air to escape from the casualty’s chest. Therefore, it is a useful to get into the habit of checking for signs of an increasing pneumothorax regularly even if you use a vented seal. If the casualty starts to display signs of an increasing pneumothorax it will be necessary to “burp” the biggest chest wound. This is achieved by manually forcing air out of the chest by compressing the rib cage (with the seal removed enough to expose the wound). Once the air has been manually expelled replace the seal whilst the downwards pressure is still being applied.

The only invasive intervention considered here for a breathing problem is that of needle thoracocentecis (or decompression). There is no time nor should there be any consideration given to more advanced interventions (e.g. finger / tube thoracostomy). Always remember the indirect threat phase can quickly and without warning return to a direct threat phase.

Casualties who fall victim to penetrating or blast injuries that do not exhibit signs of life are most likely to have exsanguinated, or “bled out”. In these cases commencing CPR is unlikely to revive the casualty as the most likely cause of their cardiac arrest is insufficient circulating blood volume – compressing the heart will not circulate blood if there is no blood left.

This is not a hard and fast rule though – if this casualty is your only casualty and the tactical environment permits then it may be in the best interests of your team and bystanders to be seen to be doing something for the casualty. Furthermore, if your medical team is immediately available and possesses appropriate resuscitative equipment (such as the ability to “plug the hole” and perform a blood transfusion) then the commencement of CPR may be warranted. Again, C-TECC produce guidelines, not rules.

Always remember to reassess your casualties as frequently as possible. It is important to rapidly acknowledge the deteriorating casualty and to ensure that all interventions performed remain both effective and necessary. Once the environment starts to settle it is important to consider documentation (this may be as simple as writing on the casualty in permanent marker) and packaging the casualty as they will require moving to an evacuation point at some stage.

Some Notes on Triage and Organisation

Triage in these overwhelming situations needs to be simple and understood. You will not have the cognitive ability to follow complicated processes in this environment. There are many systems of triage in existence. In the presence of a mass casualty situation the CareFlight triage system has been assessed as being a simple yet effective method (as it effectively triages both adults and children). This system has been adopted by many agencies around the world including certain militaries (who shall remain unnamed, you’ll just have to trust me there).

The CareFlight Triage system is a simple system that can be used by people with minimal training to determine whom should be treated when.  If casualties are able to walk (this is walk, hop or crawl) then it can be assumed their ABCs are all satisfactory (at least for the time being) and they can wait or even be transported in groups by simple means (e.g. bus) to a staging area / hospital. To put it bluntly, if you can walk then you have reasonable perfusion, irrespective of your injuries.

Casualties who do not obey commands and don’t breathe when their airway is opened are deemed unsalvageable in this setting.  However, remember that this only applies when resources are overwhelmed; if you have a single casualty then you may consider continuing full active treatment.

If the casualty is requiring airway manoeuvres for them to breathe or have no radial pulse, suggesting poor perfusion, then they have the highest priority for treatment (i.e. immediate). The other group of casualties that cannot walk, but can obey commands and have a radial pulse should be treated as soon as possible (i.e. urgent). See below for the CareFlight Triage – Mass Casualty Card.

triage

Experienced TEMS personnel have found that a lot of time is being spent on the re-triage of deceased casualties. Some injuries in the light of reflection are easily seen to be non-consistent with life, yet in the tactical environment people will re-triage these casualties many times. Therefore it is important to consider positioning the deceased casualty in a respectful yet distinctive position (that all personnel know as the sign for deceased) to indicate they have been assessed and are considered deceased.

The position recommended by Threat Suppression in the USA is to place the casualty on their back, legs crossed at the ankles, arms straight up (above head) with wrists crossed. This will help ensure the casualties that require treatment and that we can potentially save are assessed as quickly as possible.

If you are involved in setting up a Casualty Collection Point (CCP) then it is important to keep your casualties and equipment together. This minimises time wastage and allows for easy access to both the casualties and resources. It is important to ensure that you think about setting up in a protected area which gives you easy egress (escape) points as well as allowing you to maintain a good visual of any threat entry point. Here are two set-up examples:

setup-1

setup-2
There’s not a single solution but the principles stay the same

3. Evacuation Care Phase

This phase of care takes place in a safe location removed from the tactical environment. In theory, once the casualty is loaded onto the evacuation asset or moved to the pre-staged evacuation point they should be departing the scene of any threat.

Prior to commencing the evacuation all previously performed interventions should be reassessed and, where required, bolstered. Good packaging of the casualty here is vital to ensure all interventions remain insitu.

Spinal immobilisation is becoming more and more controversial as more reviews of the literature come out. Some services no longer place cervical collars as they don’t immobilise the neck effectively and make airway control difficult. However, consideration of spinal injuries should still occur and the casualty should be packaged appropriately (in accordance with local practice) for these injuries.

More resources should become available during this phase. There should be an increase in:

  • Personnel (medical, logistical, tactical)
  • Equipment
  • Medical supplies

Other considerations include: large bore venous access or intraosseous access; further assessment and administration of analgesia and fluid replacement; and if prolonged holding or transport times are expected then consideration may be given to the administration of antibiotics.

It is important to remember in this phase that only interventions that are needed should be performed. If the casualty does not need a chest tube then they should not receive one just in case. These unnecessary interventions will lead to a choke point within the flow of care and will delay casualties getting to where they need to go – the hospital!

The Summary

In broad terms, casualties in a tactical environment will fall into three categories:

  1. Casualties who will live regardless,
  2. Casualties who will die regardless, and
  3. Casualties who will die from preventable deaths unless proper life-saving steps are taken immediately.

The guiding principles of Tactical Emergency Casualty Care exist for the purpose of eliminating preventable deaths. Remember never “treat on the street” and that the right procedure performed at the wrong time or place might result in further casualties, injuries and death. If all we can do is treat extremity haemorrhage (tourniquets) and tension pneumothorax then up to 94% of preventable deaths may be avoided.

Notes and References:

Here’s a few of the more useful references you’ll find out there.

Tactical Emergency Casulaty Care (TECC): Guidelines for the Provision of Prehospital Trauma Care in High Threat Environments, 2011, Callaway DW et al, Journal of Special Operations Medicine, vol. 11, Edition 3.

How to Develop Tactical EMS Protocols, 2014, Carhart E

Afghanistan Casualties: Military Forces and Civilians, Chesser SG, Congressional Research Service, 2012

Death on the battlefield (2001 – 2011): Implications for the future of combat casualty care, 2012, Eastridge BJ et al, Journal of Trauma Acute Care Surgery, vol. 73, no. 6

A Guide to U.S. Military Casualty Statistics: Operation Inherent Resolve, Operation New Dawn, Operation Iraqi Freedom, and Operation Enduring Freedom, Fischer H, Congressional Research Service, 2014

Combat Casualty Care, 2010,Katoch BR. Medical Journal Armed Forces India, Vol. 66, no. 4

Introduction to Tactical Emergency Casualty Care, NAEMT.org

Resident Involvement in Civilian Tactical Emergency Medicine,2010, Ramirez ML et al, Journal of Emergency Medicine, vol. 39, no 1

A New Response supporting paradigm change in EMS’ operational medical response to active shooter events, December 2013, Smith ER (Jr) & Delaney JB, Journal of Emergency Medical Services

Lessons learnt and battlefield innovations from the Middle East Area of Operations, Stephenson J. 2008, Journal of Military and Veterans’ Health, vol. 16, no. 4

Learning from tragedy: Preventing officer deaths with medical interventions. Sztajnkrycer MD. 2010, The Tactical Edge, Winter 2010

Tactical Combat Casualty Care Handbook, Center for Army Lessons Learned Supporting the Warfighter.

And if you were interested enough to get this far, maybe it’s time to fill in your details so you’ll get an email update whenever there’s a new post.

 

I Wish I Knew Then What I Know Now (Edition 1 – Direct and Indirect Pressure)

Sometimes the really basic stuff needs better coverage. This series will probably start popping up a bit because sometimes it’s good to get people to share the stuff they wish someone said at the start. Here’s Greg Brown with simple techniques that could make all the difference that we should definitely do well. 

Here are two sayings you hear all the time:

  • “Simple measures are lifesaving”;
  • “I thought it was common knowledge”.

More and more we are discovering that only one of these sayings is true. Yes, some of the simplest clinical interventions are the highest yield, but there is nothing common about knowledge. Why is it then we don’t often talk about or pass on these lifesaving skills and knowledge? A lot of the time we all put it down to “if I know then everyone knows”.

So it is about time that we all started talking about these simple and or basic interventions that save lives (or at least minimise the mess we have to clean up at a later stage).

In this the first of an indefinite series titled “I wish I knew then what I know now” we will be looking at the simple yet effective tips and tricks that either:

  • We wish somebody had taught us at Uni / college;
  • Didn’t exist then but do now; or, (c)
  • We are at risk of forgetting due to an abundance of modern technology.

So quieten the voice inside your head that is saying “I am a senior doctor / nurse / paramedic / rescue guru – what could I possibly learn about the basics?” and take up the challenge to continue reading and see if you know our little tips and tricks. Or maybe you’ll have some tips and tricks to send back our way. With any luck these posts will generate some healthy continuous improvement and discussions all about the patient. We might all be surprised what we’ll learn along the way.

Controlling the Red Tide

This is not a post about quelling a Communist insurgency. Basic haemorrhage control appears to be a dying art (no pun intended). The skill of haemorrhage control is used across all areas of healthcare whether you work as an immediate responder in the pre-hospital environment, as a paramedic or professional pre-hospital care provider, within an emergency department, ICU or wards of a hospital or simply as a relative or friend after hours.

However, our observations of many of the health care professionals and volunteers that we work with (or teach) indicate that the basics are not known and rarely taught these days. So let’s look at some  – direct pressure and indirect pressure.

Direct Pressure

Direct pressure….it sounds simple enough, but how do you achieve this? Let’s use a simple laceration to a limb with venous bleeding as an example.

The standard approach to applying direct pressure will see many people reaching for a flat combine (or other blood soaky-uppy type device), placing that directly onto the wound and bandage away. What about when that bleeds through? Simple – repeat step 1 by applying a second combine on top and bandage away. What about when it bleeds through again? Easy – repeat as above. Right? Well, maybe not so much.

The problem with this process (that we have all been taught at some point) is that at no stage are you actually applying direct pressure to what is bleeding. This is not a criticism of the individual – rather, it’s a firm clue that perhaps there is an issue with the teaching.

To explain what is going wrong we ask you to consider a leaking garden hose. If your hose has a small leak in it, what happens if you place the palm of your hand down on the leak? The water oozes out underneath your hand – this is just like the flat combine being placed onto a bleeding wound (i.e. the blood leaks out the side).

Now, what if you were to walk up to your leaking garden hose and place a single finger on the hole – what would happen? Well, assuming that there is not massive pressure behind the leak then the leaking water would cease.

This is direct pressure in action. One needs to think about what it is you are actually trying to achieve with your bandaging technique – flat on flat with distributive pressure is different to direct pressure. You need to add a pressure device, and a simple solution is to add a small rolled up bandage on top of the first combine – placed directly over the source of bleeding – then bandage over that.

These images describe this as simply as we can (it’s much easier to demonstrate than describe):

direct-pressure

So simple to achieve when you think about it, and also very cost-effective.

Now, there are also various commercially made bandages out there that achieve the same thing. Two that are widely used across our planet (well, certainly in Australia…) are “The Emergency Bandage” (aka Israeli Dressing, made by FirstCare) and the OLEAS Modular Bandage (made by Tactical Medical Solutions). If you have the ability to have these as part of your kit then these are great additions – they also do a lot more than just apply direct pressure, but that is a story for another day.

oleas

Remember though, big and flashy is not always needed to be effective. The main thing to remember with direct pressure is that smaller in this case is better. By this we mean that if you only need finger point pressure to stop the bleeding don’t use a combine as your patient will bleed more than they should; and let’s face it – once the blood has left the body it is damn hard to put it back.

Story Time

Many years ago I was working in a small(ish) country hospital when an elderly gentleman was brought in by ambulance. This gent had slipped on a wet pavement and unfortunately hit his head on the sidewalk whereupon he commenced bleeding from a nasty scalp wound.

A first aider from a nearby shop applied standard level treatment – flat combine and a crepe bandage. The ambulance team arrived shortly thereafter and, noting that the first layer was soaked through with blood, applied a second combine and crepe bandage then commenced transport to hospital. Believe it or not, the process was again repeated when the second layer had bled through – that’s three combines and three crepe bandages.

head
And yes, I’ve previously got clearance to use these photos.

In the hospital the man’s dressings were removed and he was still bleeding from the wound. A single gloved finger was used to apply direct pressure and, lo and behold, three minutes later he had stopped bleeding.

One of the hospital staff then weighed the combined soiled dressings – the clot, combines and bandages weighed in at just under 800g. That is a LOT of blood what would have been better served remaining in the gentleman’s circulatory system.

Indirect Pressure

Indirect pressure is a great intervention that will stop (or at least slow) bleeding while we implement effective wound treatment. By this we mean you need to stop the blood spilling onto the ground while you apply the arterial tourniquet or pack the wound.

Indirect pressure is achieved by applying a compressive force proximal to the damaged artery until the bleeding stops (or is at least slowed down). There are in essence two methods of achieving this:

  1. Use of manual indirect pressure (e.g. a knee to the groin (femoral artery) or fist / knee to the elbow (brachial artery)); and
  2. Arterial tourniquets.

This Collective entry will only deal with the former; we’re keeping arterial tourniquets up our sleeve. Or somewhere.

So, manual indirect pressure.…again, it sounds simple enough. But how do you achieve this?

Many people are taught to simply apply some form of pressure to an artery above the wound. But, given that many first aid courses no longer teach the taking of pulses (for the international readers, within Australia a few years ago “first aid” seemed to become very cardiac arrest oriented, and we all know the presence or absence of a pulse no longer forms part of the CPR ritual for many people…) how can a first responder be relied upon to locate a brachial or femoral pulse in an exsanguinating patient when they’ve never been taught?

It is not just the first responders who are at risk here. As healthcare professionals we need to be able to act reliably and instinctively in the presence of life threatening haemorrhage. None us were born with ultrasound-guided vision (patent still pending so back off), and if you are reaching for your favourite POCUS device to find that vessel then you are doing your patient a great disservice.

The money shot is to go for the joint – at least here the pulses tend to be more superficial – and apply pressure there. How much pressure? Lots, in fact as much as you physically can! Manual indirect pressure requires a lot of force. To be most effective one needs to use as much of their own body weight as possible. Don’t stop here though – there is a vitally important extra step to this technique that is not widely known.

If all you do is apply a compressive force to the area in which the artery lays you stand a very good chance of missing your target’s location and sitting either left or right of where the artery actually lies. To ensure that the artery is compressed we recommend adding a twist of the knee or fist after compressing in order to kink off all vasculature under where the compressive force has been applied. We call this technique a “Z Lock”. This helps ensure that you are going to stop (or at least slow down) the bleeding and buy yourself time to treat the actual wound or apply an arterial tourniquet (if warranted).

Press and twist. It makes a difference. Also those are the instructions for that ultrasound-guided vision device. Damn. Shouldn’t have mentioned that.

Summary

Direct and indirect pressure are powerful interventions that help minimise a patient’s blood loss. They are however often forgotten about during both teaching and application stages as we become more and more task fixated. So we challenge you to make these steps part of your training regimes when talking about haemorrhage control. Practice them or, as one of our former instructors used to say, “don’t just be good at the basics – be awesome at them!”.

Brighter Lights for Darker Nights (or How and Why to Set up Trauma Workshops for Your Local Volunteers)

Greg Brown, the person with the job of coordinating education at CareFlight on things anyone with a bit of background can do to help make the wide, brown land feel a little less remote. 

It is a dark and stormy night. It had been a long day at work and you are now driving home from a nearby town where you have been holding fort at what is loosely termed a “hospital”. Your mind drifts to all that is warm, dry and welcoming – family, a comfortable lounge, re-runs of your favourite show (obviously it’s Helicopter Heroes…) – only 40km to go…

These were your last conscious thoughts before you hit a kangaroo, lost control of your Tesla (okay, maybe a Camry) and crash into a tree.

A passer-by calls emergency services. They are on their way – but it’s a dark and stormy night and you don’t live in NSW (that’s Newcastle, Sydney or Wollongong) and the response will be made up of volunteer emergency services.

Meanwhile, a page goes out back in your hometown. Members from various volunteer agencies drop their food and head to their respective depots, don their respective protective uniforms (usually coloured yellow, orange or white), jump in their respective response vehicles and head to the scene where you are now cold, wet and sore.

You are still in your car – you cannot get out because the dashboard has collapsed into your lap. The passer-by tells you that the first response vehicle has arrived. You twist your head to see who it is – Police, Fire or Ambulance? It’s none of those – you don’t live in NSW (again, that’s Newcastle, Sydney or Wollongong) and the response is made up of volunteer emergency services: State (or Territory) Emergency Service, the volunteer bush fire brigade and some others that you didn’t even know existed.

“Where’s the ambulance?” you ask – but the nearest ambulance is at least another half an hour away – maybe more! They tried calling the local doctor but it turns out that was you.

Damn those “dark and stormy nights” you sigh……

Reds Mando Gomez
The other kangaroo probably looks even less impressed.

The Problem

If this scenario sounds far fetched then I encourage you to head out of the big smoke and go bush for a while. Situations such as this are not only real – they are an almost daily occurrence in Australia and many other parts of the world. Conservative estimates reveal that volunteer emergency services personnel outnumber their paid (professional) compatriots by a ratio of 20:1 in Australia with similar comparisons reported abroad.

But all is far from lost. The reality is that the vast majority of emergency services volunteers in Australia are highly capable, appropriately resourced and widely respected for the unpaid yet vital roles that they perform in serving their communities in times of need.

But (yes, there is always a but) those roles rarely include the provision of medical first response unless they are trained community first responders or volunteer ambulance officers. As such, it is also a reality that in non-metropolitan Australia the victim of trauma (vehicle, industrial or other) is likely to be treated initially by a volunteer with nothing but a generic first aid kit and some non-specific training – good if you need a splint or sling, not so good if you are seriously injured. What’s more, many of these volunteers lack the confidence to engage in the provision of medical first response.

The Challenge

Whilst it would be nice if an expertly trained and equipped pre-hospital care team was available in every postcode every hour of the day, we all recognise that this is simply not possible. But (yes, another but) we can do something to help the volunteers that are out there in regional and remote areas. It’s called training.

In the mid 2000’s a small group of “greybeards” at CareFlight were discussing the ways of the world over a few decaf-soy-mochaccinos (probably more likely double macchiatos…) and collectively voiced that if only those volunteers in regional and rural Australia felt appropriately trained and empowered to do a few extra small things for their casualties then they could make even more of a difference to the survivability of the people that they treat. Thus, the concept of the Trauma Care Workshop (formerly termed the Volunteer Trauma Course) was born. With this concept came a list of expectations. These included:

  • The training was to augment the participants’ current training content and systems, not replace them;
  • It needed to bridge the gap between high quality first aid and the care provided by professional medical responders;
  • The educators providing the training needed to be expert clinicians that were clinically current – credibility was going to be important;
  • The training needed to occur in the locations where the responders live – not in Sydney; and
  • Since the participants were likely to comprise mainly volunteers, the training had to be for free (or at least at no charge to the individuals).

Nothing like a good challenge to get the neurons firing…

The Role of AeroMed in Regional Trauma Training

There is little doubt that the sound of an aeromedical flight (helicopter or fixed wing) provides reassurance to both the injured patient and their carers, especially in regional and remote areas. The very sound of an inbound flight conjures up images of advanced medical care, expert clinical decision makers and the opportunity to whisk the patient away to a shiny hospital filled with white lab coats and machines that go “ping”.

The reality is that most trauma patients do not get better at the place their injury happens; they get better in hospitals. So the presence of an aeromedical retrieval team on scene does not in and of itself guarantee survival for the patient – but it can help. So too can that group of volunteer emergency services personnel – if they are trained and empowered to do so.

Herein lies the opportunity. Aeromedical providers owe it to the volunteers that they support to build local capacity and resilience within the regional and remote areas that they service. After all, at some point we all must recognise that we all exist for the same purpose – that is to save lives, speed recovery and serve the community. It is not about the colour of your uniform, nor is it about the company that pays you – it’s about people.

The same is true for clinicians working in regional and remote areas but not associated with an aeromedical provider. Clinic staff are often the second line of defence in the battle against trauma related morbidity and mortality. Supporting the local emergency response team in many ways makes your job easier, and who doesn’t want that?

So what can we offer? To me, we can offer three things: time, knowledge and support.

1. Time

Never underestimate the power of offering your time. I know you are busy – heck, we are all busy. But finding the time to head bush and conduct clinical teaching for those who are rarely exposed to it is one of the most powerful gifts that you can offer.

Emergency services personnel, particularly those of the volunteer varieties, want to know what you are thinking when you are presented with a casualty – any casualty. For you it may be a simple, run of the mill, seen it a thousand times before type of patient; but for the local volunteer emergency services personnel it will likely be new, difficult, unexpected, or perhaps all three! What are YOU thinking when you fly overhead? What goes through YOUR mind when you step onto the pre-hospital scene? How does YOUR clinical assessment process differ from that of a first aider? They can never learn from you if you don’t ever find the time to visit their locations and teach them. Your time is important – to both you and them.

2. Knowledge

Most readers of this article will have at some point in their careers been subjected to a training session delivered by an individual who knows their content but nothing more. This is all-too-often the case in first aid. The reality is that the process for teaching accredited first aid in Australia is highly regulated within the AQTF (that’s the Australian Quality Training Framework – if you’re having trouble sleeping you could look right about here). To pretend you can change or ignore this is perilous.

So aeromedical providers need to embrace the fact that the emergency services personnel that they work with already hold first aid skills and therefore seek to deliver complimentary training. In other words, fill the gaps but eliminate duplication.

What are the elements of casualty care that are easy to perform by a non-clinician yet not covered by the majority of first aid courses? Consider topics such as arterial tourniquets, the difference between crush injury and release syndrome, and the elements of aeromedical evacuation that they need to know (e.g. like not using flares when you’re flying on night vision goggles).

3. Support

The need to build resilience amongst emergency services personnel in Australia is well publicised (if you don’t believe me check out this or this or this).

Building this resilience is a long and involved process, but simple things can and do make a difference in the lives of emergency services personnel. It can be as simple as: acknowledging effort; involving them in decisions; asking them their opinions; and explaining what you are doing / thinking. But you can build resilience during training by offering your time to answer questions or “fill in the blanks”.

For example, in 2015 I taught a bunch of volunteer and professional emergency response personnel at a resort in an extremely remote part of Australia (note: details kept purposely vague). Whilst there we heard of a horrendous job that the local team attended which involved the death of a tourist. In 2016 our team taught a different bunch of response personnel in a different part of Australia and had the opportunity to informally debrief an individual who was effected particularly badly by the aforementioned incident – essentially, this individual volunteered to accompany and protect the deceased tourist overnight in the bottom of a canyon until a repatriation team could fly from the nearest urban centre.

This is an extreme example, but every time I teach I am afforded the privilege of hearing these personal stories. I like to think that every time an individual vents their job related emotions to me that “black dog” is pushed ever so slightly out of the picture.

CareFlight’s Trauma Care Workshop

As previously mentioned, the Trauma Care Workshop (TCW) concept was born out of numerous conversations had by the “greybeards” of CareFlight. It took a few years to secure the funding, purchase the equipment and, of course, write the content, but between January 2011 and June 2016 a total of 174 TCW’s were delivered to a total of 2711 emergency services and first response personnel across Australia – at no cost to the individual attendees.

Everywhere copy
Trauma Care Workshop Locations 2011-2016

The TCW is an eight hour interactive workshop that is delivered either as a single day session or over two consecutive nights. Utilising the principles of adult learning (look up andragogy or Knowles’ principles of adult learning – or just go here) the content is delivered by professional pre-hospital care providers, many of whom also hold post-graduate or vocational qualifications in clinical education, training or assessment.

Any contemporary medical training that is worth the paper it is written on is interdisciplinary in nature. Therefore, the TCW works best when members from different services (e.g. state emergency services, bush fire brigades, rescue agencies, police, park rangers etc) all attend. After all, when was the last time you attended a pre-hospital scene and saw only one colour uniform?

KI copy
Park Rangers and Volunteer Ambulance Officers training together on Kangaroo Island, South Australia

The reality is that pre-hospital scenes are like an open bag of Skittles – every colour under the rainbow all mixed in together. But this goes for the Educators too. Where possible, the three Educators on any given TCW will come from diverse clinical backgrounds – critical care doctors, specialist flight / emergency nurses and professional paramedics.

Importantly, all content is evidence based and research centred. The content itself is delivered through a combination of pre-readings, didactic lessons, interactive skill sessions and immersive scenarios which cover the essentials of pre-hospital trauma care:

  • Patient assessment techniques;
  • Haemorrhage control;
  • Basic airway management;
  • Mass casualty triage;
  • Extrication;
  • Burns management;
  • Teamwork and communication strategies (including the need for a shared mental model); and,
  • The essentials of aeromedical evacuation.

But what the TCW does NOT do is change anybody’s scope of practice; the TCW is designed to augment previous training, not replace it. We are not there to take over the world or supersede anyone’s service – it’s about the patient, not the uniform.

If individuals who complete a TCW wish to see their scope of practice altered in light of their newfound knowledge and skills then the responsibility for achieving these changes rests with them (although we are always happy to provide the evidence to back up their case).

Kalgoorlie copy
Police and local mine rescue staff often form the frontline in emergency response in outback areas (photo from a course in Kalgoorlie, Western Australia).

But what about you?

Whilst at CareFlight we love delivering high quality evidence based training in locations that are off the beaten track the reality is that we cannot be everywhere. But if you are living and working as a clinician in regional areas then you can help.

Head down to the depot of your local volunteer emergency services agency and introduce yourself. Whilst there, ask them how you can help. They will most likely be looking for more volunteers but the purpose of this article is not to recruit those (although that would be a welcome side effect); instead ask them what medical-based training they’ve been looking for and seek to fill the gaps.

You may find this to be a challenge, especially if pre-hospital care is not your forte. However, the benefits for the community – you, the volunteers and the constituents alike – will be huge. You will need to conduct research, refresh some long forgotten knowledge and perhaps step outside of your comfort zone – all great professional development benefits.

NT copy
Park rangers, resort staff, volunteer emergency services and local cattle station workers all training together at a Trauma Care Workshop in the Northern Territory

The volunteers will benefit from the networking and the opportunity to expand their base of knowledge via education delivered by a local healthcare professional.  This will lead to increased confidence within the volunteer group and therefore positively affect their willingness to commence appropriate clinical treatment (even when their primary role is not a medical one). The community will benefit by having local emergency responders who are better trained, more empowered and have increased resilience.

In the words of Mr Dylan Campher (from Queensland Health’s Clinical Skills Development Service), “Economy of scale is produced by having a single agreed model and adapting that to the local needs”. In other words, training and working together makes sense. There are some caveats though:

  1. Don’t expect to change the world overnight – believe me when I say that the wheels of change turn slowly in highly regulated environments.
  2. Don’t attempt to teach something that you have no credibility in – differentiate between what you know (based on experience, training and research) versus what you think.
  3. And perhaps most importantly, don’t ever discredit their previous training. Is it perfect? Probably not. But has it helped serve the community prior to your arrival? Absolutely!

Remember: fill the gaps, eliminate duplication.

That dark and stormy night …

All is not lost. It turns out that the volunteers in their various coloured suits have trained for this very incident – in fact, judging by their shared mental model, it appears that they have trained together!

They rapidly assess the scene and make it safe then apply a “zero survey” to you. This “zero survey” has allowed them to sort any oxygenation issues and expedite your extrication from the car using appropriate spinal precautions. They then applied all the relevant clinical interventions within their scopes of practice including binding your pelvis and protecting you from the elements; all you need now is for the volunteer ambulance crew to arrive on scene so that you can be taken back to work (no re-runs of Helicopter Heroes for you tonight).

You gaze up at the volunteer in the yellow / orange / white uniform and ask “Who are you people, and where did you learn to do all of that?” Her response? “We are just the local volunteers – and your predecessor taught us.”

 

The Post Script:

If you want to know more about the CareFlight Trauma Care Workshop then go here.

If you would like to know about the other clinical education delivered by CareFlight then check out this spot.

If you would like to keep up with where we are and what we are doing then consider following us on Twitter where we travel under @MyCareFlight_Ed

The image of the kangaroos was posted by Mando Gomez under Creative Commons and is unchanged from the original post. All those appearing in the other photos have given previous permission.

 

Getting Things Straight

Lots of beliefs are hard to shake. Andrew Weatherall covers one from the paediatric airway – the holy status of the straight blade.

As I’ve mentioned before, paediatric airway management is full of mythological beasts. Some of that is about anatomy stuff and the like. Some is about equipment. Plenty is about technique. Sometimes it’s about technique and equipment together. Bliss.

So this is where I wade into another topic in paeds airways:

Straight blades are overrated and you should throw them away.

Marc Zimmer Dog Unicorn Dog
It is a time for mythical beasts. Like the fabled unicorn dog but less cool.

Do we need big bins?

Well, actually no. Stop the indignant letter writing. When I say they’re overrated I don’t mean they have no value. They have a role like most items of equipment that are still in use after nearly 100 years probably still have a role.

What I do mean is that straight blades are treated with a reverence in paediatric airway management that is unwarranted, while curved blades like the Macintosh seem to be described as “bigger people’s airway devices”. Trainees could easily go through their whole training period thinking that you must always use straight blades for patients who understand what the hell Pokemon are all about.

That just isn’t true. People who swear by straight blades will point to the more anterior epiglottis and the angle of the cords to argue the case for their chosen device just as convincingly as those who like a curved blade point out that they get more working space in the mouth and a familiar blade and both will be sort of right.

It might be useful to dive into this a little more. So let’s work through a paper from 2014 that specifically looked at the straight vs curved blade question. Partly because it gives an appropriate ‘meh’ when trying to split the two options but also because it highlights how myths can dominate our perception of the original work.

 

Welcoming the Contenders

The paper here appeared in Pediatric Anesthesia in 2014 (I touched on this in the other post). The authors set out with a useful question: is there a difference between Miller and Macintosh blades when it comes to ease of obtaining a view and success of intubation in the 1-24 month age range?

They looked at well kids having elective surgery under anaesthesia where muscle relaxation was also used. They included 120 kids and each kid had laryngoscopy with one device then the other.

The results are a case of a big old shrug, which is sort of OK. Easy laryngoscopy was noted in pretty much the same percentages. First pass success pretty much the same. The rates of one being better for the view than the other were pretty much the same. When it was difficult with one view the rate of switching to the other and finding it was easier was about the same regardless of whether you had started with the Macintosh or Miller.

So the two blades that stepped into the ring step out with no knock out punch thrown. There are a number of other interesting points when you look in more detail though and a few comments I’d make in passing.

  1. The epiglottis isn’t the endpoint

I have this impression that trainees get really obsessed needing to pick up and control the epiglottis with a straight blade. In this paper the routine use of the straight blade was to place the tip in the vallecula. In only 2 of the 60 uses of the Miller blade did they pick up the epiglottis.

Why do people get so antsy about picking up the epiglottis? It was only ever described as one of the options to obtain the view, not the only option. Those early designers never forgot the aim: to obtain a view to let you instrument the trachea.

Here’s Miller from the paper where he described his blade:

“The epiglottis is visualized and raised slightly to exposure the cords or, if the operator desires, the tip of the blade maybe placed in front of the epiglottis and raised sufficiently to visualize the cords after the method of Macintosh.”

In fact Macintosh described the straight blade being used in this manner when he reported on his own design, singling out Dr Margaret Hawksley as an exponent of this technique. The authors of this recent paper further point out that it’s a lot more stimulating to pick up the epiglottis. That’s worth at least a thought.

Miller wasn’t precious about how you get the view. The idea that picking up the epiglottis is the only technique just got repeated enough that no one remembers to question it. The epiglottis isn’t the main game. The view is the thing.

  1. Make sure of your basic technique

One of the other interesting features here is that there are some elements of the intubation technique that seem like they could do with a review. An example: the Miller blade was advanced centrally along the tongue. This is a technique taught by heaps of people and I think Miller probably would have strong feelings about that. Again let’s go back to the paper:

“The blade is inserted in the right side of the mouth, pushing the tongue to the left.”

One of the bigger challenges in getting a view in paediatric patients is getting the tongue out of the way. This is particularly for straight blades which tend to have less of a flange to do some of the work for you. I’m not the only one who thinks so, either:

“On passing the instrument into the mouth the tongue should be manipulated to the left side, away from the slot; otherwise the organ may roll into the barrel and completely obstruct the view.”

That was Magill. In 1930. Now Magill might have been describing the use of a speculum but the principle is the same. The tongue is only likely to make your view worse (and given that straight blades pose an additional challenge in having not as much space proximally to work in, that really matters).

Magill went on to point out that if you struggled at all you could move the proximal end of our instrument further to the right corner of the mouth – that’s also known as the paraglossal view and turns out to be pretty much the best way to go.

In other basic technique points the authors of this recent paper mention that laryngoscopy was done with the head in a neutral position. This doesn’t seem like optimal head positioning for use of either blade, and that’s another point worth keeping in mind.

  1. It’s useful to know what the intended use was with your instrument of choice

In this paper and in the comparison with the Cardiff blade they refer to as an example of other “blade vs blade” papers, a comment is made that when you introduce an endotracheal tube centrally you can compromise the view and that it’s not great for introducing your tube via any central channel.

Miller, again:

“The scope is used for visualizing the cords only. One should work outside the blade to insert the tube. The only criticism of the instrument has been that it is too small through which to work. It was not designed to be used as a guide for the catheter.” (That’s the author’s work with the italics, not an edit from me.)

In fact Miller searched for a new design because he felt small laryngoscope blades on the market were too big. It’s designed to be small.

So yes, you need to use a technique where you bring the tube in from the side. That was always the point.

  1. Should we stop talking about external laryngeal manipulation like it’s an extra?

This is really a bit of open musing on my part. This was done in over 50% of the patients in both groups and generally helped when it was used. I can see how the precision of description goes up when we include these details but it strikes me as so much a part of every intubation (as this external pressure means less work for the laryngoscope itself) that I wonder how much it adds to our appreciation of clinical use. That’s one for the comments section I guess.

Messages for the Prehospital or Retrieval Type

After sifting though all of that, what are the take home messages? Well, here are some from me that might need additions from others:

  1. Know what you do and why you do it

Those picking up a laryngoscope for the little people need to have thought through what they will use and why. If I’m offered a personal preference it is to use a curved blade for everyone. Even as a paeds anaesthetist I’ve just used a curved blade more. It’s better designed to control that pesky tongue. You get a huge working space within the mouth and with external laryngeal manipulation (which I’d call standard) you can pretty much always bring the airway into view, even in the slightly anterior larynx.

I haven’t seen a study that would confirm this hunch, but I wonder if one of the problems some prehospital clinicians have with paeds intubation is they pick up a laryngoscope they didn’t really learn, very rarely use or rehearse with and don’t really understand. You need to focus your technique slightly differently with a straight blade. Add the stress of the situation and is it any wonder the job becomes harder?

I’d back the occasional proceduralist as more likely to intuitively understand the anatomy using the same sort of blade they always use. I doubt it’s a study that would be easy to set up in anything but mannequins though.

  1. Know the different options

That preference for people using what they know doesn’t mean you shouldn’t learn both. This study did highlight that some kids just have a better view with a particular blade. You can’t quite get as good a view with one option, switch to the next and all of a sudden it’s easier. Again though if you’re reaching for that other option use it right.

  1. Make your technique appropriate for the 1% and the 99% will be fine

This is more of a general point. Laryngoscopy in infants is easy the vast majority of the time. So if you don’t bother controlling the tongue you’ll probably get by most times. It’s the 1% where your routine practice of not getting the tongue out of your view, or being able to aim for either the vallecula or epiglottis, or positioning the head right will start to bite.

If you always do everything to maximise your view, you’ve already got a good technique for the 1%. It’s best not to need to review your technique once the blade is in and you’ve figured out this is the tough one you’ve been dreading.

So after all that, maybe paediatric airway instrumentation comes down to a really simple refrain: the tool in the hand matters less than the tool holding it.

 

Notes:

That image comes from Marc Zimmer on flickr under Creative Commons and is unaltered.

Here’s the paper mentioned again:

Varghese E, Kundu R. Does the Miller blade truly provide a better laryngoscopic view and intubating conditions than the Macintosh blade in small children? Pediatric Anesthesia 2014;24:825-9. 

And the others …

A review on the popularity of the Macintosh blade:

Scott J, Baker PA. How did the Macintosh laryngoscope become so popular? Pediatric Anesthesia 2009; 19 (Suppl 1):24-9. 

Miller RA. A new laryngoscope for intubation of infants. Anaesthesiology 1946;7:205-6.

Macintosh RR. A new laryngoscope. Lancet 1943;1:205.

Magill IW. Technique in endotracheal anaesthesia. British Medical Journal 1930;2:817-20.

and the Cardiff paper:

Jones RM, Jones PL, Gildersleve CD, et al. The Cardiff paediatric laryngoscope blade: a comparison with the Miller size 1 and Macintosh size 2 laryngoscope blades. Anaesthesia, 2004;59:1016-9.

 

 

Same, same? Actually different

More of the operational data from the Head Injury Retrieval Trial has just been published. By luck more than anything else this has occurred within 24 hours of the publication of the main trial results which you can find here.

Some operational data about systems used in the trial has already been published. A key part of HIRT was a dispatch system where the operational crew were able to view screens with case information as they were logged to spot patients who may have severe enough injuries to warrant advanced care. They could then use the available information or call the initiating number for further details. If the available information matched the criteria for consideration of an advanced care team, the randomisation process then swung into action. The whole idea was to streamline the process of activation of an advanced care team to severely injured patients.

A study looking at this dispatch system in the context of identifying severely injured children has already been published here. This study compared the trial case identification system with the Rapid Launch Trauma Coordinator (RLTC) system in NSW. When the trial dispatch system was operating the paediatric trauma system in Sydney performed significantly better than when the trial system was not available. This was a combination of the dispatch system and the rapid response capability of the trial HEMS. The speed and accuracy of dispatch was a key component however.

So what’s this new paper about?

In this new paper we had the opportunity to explore the HIRT data set to look at the times it took various team models to treat patients and get them to the hospital, and then through the ED to CT. The data is unique as far as I know as we had the unusual situation of two physician staffed services operating in parallel sometimes being dispatched to the same patients.

You can find the paper here.

Getting to a CT scanner in a more timely fashion than this was a way of tracking patient progress through their care. [via telegraph.co.uk]
Getting to a CT scanner in a more timely fashion than this was a way of tracking patient progress through their care. [via telegraph.co.uk]
First comment is that this appears to confirm some European data that physician teams do not significantly affect prehospital times when compared with paramedics although the intubation rate is much greater. Papers such as that by Franschman from the Netherlands make interesting comparisons with this paper. The Dutch Physician staffed HEMS system closely mirrors the HIRT rapid response system in time intervals (and many other factors too). The fact that we have such similar results half a world apart suggests some generalisability of the data.

So are there some differences?

This study did show some differences between the physician teams in those time markers through the patient pathway. It’s worth making a couple of comments that might help to interpret that data.

This is not about individual performance but about systems. There were doctors and paramedics who worked across both systems. Their times followed the pattern of the system they were operating in on any given day.

If you look in the study discussion, the two physician HEMS systems are quite different. The Greater Sydney Area (GSA) HEMS forms part of the State ambulance helicopter system. It has to be all things to all people all the time. They have a wide range of tasks including interfacility transports, hoisting operations, ECMO and IABP transfers etc and they may potentially be tasked anywhere in NSW and perhaps up to 100nm off the coast. By necessity they are multirole and they have to be able to respond to any of these mission types when the phone rings without any notice.

The rapid response HEMS system that was set up for the trial is not constrained in the same way. It is a specialist service where every mission follows the same basic pattern. This data indicates that it is very, very good at doing one thing. Indeed as far as I am aware the scene times for intubated patients are the fastest achieved for a physician staffed HEMS anywhere in the world, even slightly faster than the published data from the Netherlands. The price of specialisation however is that this service cannot perform the range of tasks that the multirole GSA HEMS undertake.

Put simply the services are not interchangeable. The data indicates that the specialist rapid response model will arrive at patients first compared with the multirole GSA HEMS model anywhere in the greater Sydney area, except at the extreme edges of their operating range where rural bases may be faster, or within a couple of km of the GSA HEMS Sydney base.

The differences also apply to scene times where the HIRT rapid response system had scene times of half that or less observed in the GSA HEMS teams, even when confounders such as entrapment and requirement for intubation were considered. We speculate on some reasons for this such as the relative team sizes for the two operations. There may well be advantages in highly familiar teams. There is certainly some evidence for this in other areas of medicine.

What do we make of this?

Overall however I think specialisation is the key. If we again compare the HIRT rapid response model to the Dutch physician staffed HEMS system the similarities are striking. Like the HIRT system, the Dutch only perform prehospital cases, they only operate within a limited radius of their operating base (including urban areas) and they do not have hoists. Like most European HEMS they have small team sizes. And their times are remarkably similar to that achieved by the HIRT HEMS system in our study. It is all about how the services are structured and their role definition which makes them good at what they do.

There are clear implications for the task allocation system in Sydney from this data.

The current pattern of tasking appears to allocate physician teams primarily on who is closest. This allocation only makes sense if the two teams are interchangeable in capability. This is very clearly not the case. The two systems are quite different. The relative strengths of each service should be taken into account in the dispatch policy so that patients will get the most rapid and most appropriate response possible given their location and clinical condition.

The patient doesn’t care who started out closer. They want the service they need for their situation. The different strengths of the two services should form a complimentary system that ensures the fastest and highest quality care to patients, whether they are on the roadside, already in a smaller hospital, at the base of a cliff or on a ship off the coast.

What about dispatch?

The evidence from this study combined with the previous study on the Sydney paediatric trauma system also indicates that the HIRT case identification system significantly outperformed the RLTC in both speed and accuracy.

The trial case identification system operated for nearly 6 years without a single report of any type of safety incident, even of a minor nature. Once the RLTC came into being in 2007 the RLTC and HIRT systems operated collaboratively to identify severely injured children and ensure a speedy response. When HIRT identified a paediatric case, they checked with RLTC who retained tasking control to ensure that there was no additional information or competing tasks that might affect the dispatch decision. In this way Ambulance retained central control and oversight of the system and a double up of tasking to paediatric patients was averted. This would seem to be the ideal system with patients benefiting from the increased speed and accuracy of the parallel case identification process when the HIRT and RLTC systems were operating together, but Ambulance retaining central control so that competing tasks could be balanced. The HIRT dispatch system was however discontinued in 2011 when the last patient was recruited into the trial.

The practical difficulties of applying this level of sophistication to resource allocation, given the sheer volume and variety of demands on the centralised despatch system, need to be acknowledged. Nevertheless it might be time for a rethink.

Here’s those references again:

HIRT.

The comparison of dispatch systems in paeds patients.

The times paper.

The Dutch study.

 

 

A Bit of New Evidence on Drowning

An opportunity for a quick post to point to a new publication with something useful on drowning. From Dr Alan Garner.

Unfortunately we attend a number of paediatric drownings in the Sydney area every year. Many recover well. Some do not. Some do unexpectedly well. We have had a patient who was GCS 3 at our arrival and asystolic on the monitor make a full recovery. Most children in this situation however either die or are severely impaired.

This brings us to a vital question – when is it reasonable to stop resuscitation? Well, here’s some evidence to help inform the chat.

The Dutch Study

Over at the BMJ a new paper has just hit the screen:

Outcome after resuscitation beyond 30 minutes in drowned children with cardiac arrest and hypothermia: Dutch nationwide retrospective cohort study. 

This study is a nationwide observational study in the Netherlands of children with cardiac arrest due to drowning. The authors have put together ten years of data collected in a country with more than 30 million people. It seems unlikely we’ll see a bigger study.

The study indicates that no child resuscitated for more than 30 minutes had a good outcome. There were good outcomes in those resuscitated for less than 30 minutes.

This matches our experience. Our patient with the GCS 3/asystole combination and a subsequent good outcome had a return to spontaneous circulation while still on scene.

The other point of interest is that it is from an environment where water temperature is presumably a fair bit colder than the coastal fringes of Australia, but the results would appear to be similar.

It would appear that discontinuing resuscitation after 30 minutes in those with no neurological improvement or stuck in asystole is a reasonable practice.

It still comes down to time.