Tag Archives: remote

Unexpected at 24,000 Feet

Contributors Dr Toby Shipway and Flight Nurse Jodie Martin return with a little about something that would make any retrievalist sweat – delivering babies in the air. 

A call came into the Logistics Coordination centre from a nurse in a remote health centre, worried about new contractions in a pregnant woman who was 31 weeks pregnant. We decided to take a full retrieval team for the ‘just in case’ scenario.  Afraid of getting caught out, we had a big discussion to make sure we had all the right gear on board the aircraft and what our plan of action would be should we be faced with the rare event of an inflight birth. Why worry though? They’re rare, right?

We retrieved the woman from a remote airstrip and it became evident just after takeoff that she was in established labour. Even after tocolytic therapy, the preterm baby was born at the start of descent into Darwin. No one on the plane will forget the midwife examining the patient, looking up wide-eyed and shouting calmly down the plane ‘its coming out now’.  Never has a pilot descended at such a pace. After initial resuscitation of the baby, both mum and baby did well and were transferred safely to the hospital. Phew.

After this, we started researching how many in-flight births had been registered during CareFlight’s tenure in the Northern Territory (NT). This became the basis for a recent case series publication in the Airmedical Journal.

img_4028
The sort of view you don’t get to enjoy when it starts getting imminent.

The Big and Little Numbers

Four cases were found on searching through the database over a four-year period from 2011 to 2015. Over that four-year period there were 1311 retrievals associated with Obstetrics and Gynecology, out of a total number of 15967 retrievals in the NT. This means obstetric and gynecology related retrievals account for approximately 8.2% in our aeromedical retrieval service.

Looking at the obstetric retrievals in more detail, there were 436 cases associated with pre-term labour of which 4 progressed to in-flight births. This equates to an incidence of 0.92% of all women transferred in preterm labour. It is not a common clinical situation.

These numbers are similar to a paper from Ontario, Canada1, which showed an incidence of 2.25% (11 in-flight births from 488 pre-term labour patients over a 5 year period). A paper from RFDS in Western Australia from 20122 showed no in-flight births over a 26-month period, with 500 cases of women at risk of pre-term birth included. Our four cases aren’t the only ones happening in Australia though. There was a preterm birth on an aeromedical aircraft over the Bass Strait recently.

What About Those Cases Then?

Here’s a brief description of each of those 4 cases.

Case one was a 37 year old woman of gestational age 36+5 weeks, gravida 5 para 2. The retrieval was tasked in the early hours at 0010. Take off was at 0050 and contact was made with the patient at 0145 at the airstrip. She was contracting 3:10 at this point. Tocolytics had been administered according to protocol, which was 3 separate doses of nifedipine 20 mg initially, at 30 mins and at 1 hour.  Return takeoff was at 0210 with progression to spontaneous vaginal delivery of the baby at 0245. 10 unit of syntocinon was administered intramuscularly with approximately 300 mL of blood loss measured with delivery of the placenta. Apgars of 61 and 95 were recorded. Both baby and mother were discharged at 3 days from hospital with routine follow-up from the community nurse.

Case two was a 25 year old woman of 31week’s gestation, G2P1 – this was the case from the top.  Again this was an early morning flight, tasking was at 0052 and take off was 0128.  Patient contact was made at 0250, where the patient walked onto the plane contracting 1:10. The clinic team had given nifedipine as per protocol. Return takeoff was at 0300 with progression to spontaneous vaginal delivery at 0400. Apgars were 61 and 85 with the baby needing some supportive ventilation. Mother and baby were transferred to hospital where on assessment in the neonatal unit positive pressure ventilation was stopped. Length of stay for this little one with intrauterine growth retardation was 22 days; there were no complications with the mother.

Case three was a 31 year old woman of 22 week’s gestation, G6P2. This one came up in a previous post as it involved a complicated resuscitation of mother and baby. The midwife was en-route back to home base on another task when the referral call to divert to this case was made. This again was in the early morning with the re-tasking occurring at 0330. On assessment at 0450 the patient was contracting 3:10, and the clinic reported a large clot was passed in clinic. Return takeoff was at 0500, with progression to spontaneous vaginal delivery at 0522. Apgars were recorded as 61 55 510 as neonatal resuscitation was ongoing. The mother delivered the placenta at 0548, which was accompanied by a PPH of 1 L dropping maternal BP to 42/38. Fundal massage and a blood transfusion were started. On landing the retrieval team was met by a ground crew – the neonate was transferred in a separate ambulance with ongoing resuscitation by the Medical Retrieval Consultant and a flight nurse. On reaching the Emergency Department the multi-disciplinary team decided to cease resuscitation of the baby at 0645. The mother received further blood products and stayed in hospital for 4 days.

Case four was a 26 year old woman of 28+5 week’s gestation, G2P1. This was the only retrieval in daytime hours with tasking at 1040 and take off recorded as 1135. The retrieval team went into clinic on arrival, making contact at 1245. On assessment the patient was contracting 1:10. Return takeoff was at 1345 and patient passed a large blood clot at 1410 with rapid progress to spontaneous vaginal delivery at 1418. Apgars recorded were 61 95 and some respiratory support with nasal high-flow was given. The placenta was passed at 1425 and the total blood loss was estimated to be 250 mL. The patient had no documented cardiovascular instability. The patient and baby were transferred to hospital with no further issues. However the baby stayed in hospital for 66 days needing long-term respiratory and feeding support. It was diagnosed with a dilated cardiomyopathy and on follow-up review was listed for a heart transplant.

 

What About the Treatment?

All women received the recommended preterm labour treatment, being intravenous antibiotics and steroid therapy. Three out of four patients received tocolysis – the fourth case did not as the blood clot passed in clinic was deemed a contraindication. It was reported vaginal examinations upon referral were conducted in 3 out of 4 of these cases. Interestingly, the reports of those examinations found the cervix to be closed or an undetermined dilation.  It goes to show that despite our best estimates from a physical examination we need to be prepared that inflight birth may in fact occur, even though it is a rare occurrence.

In transferring women in pre-term labour, the aim is to keep the baby in utero, as the evidence relevant to our setting indicates that in utero transfer is associated with much improved maternal and neonatal outcomes. The NT has a particularly high proportion (10.6%) of preterm births prior to hospital arrival and although multifactorial the large distances are likely to play a significant role.  Prompt retrieval and the involvement of a team with the right skill mix to make a detailed obstetric/midwifery risk assessment would hopefully lessen the chances of inflight birth. But very rare still doesn’t mean never.

Notes:

Here are those other papers again:

McCubbin K, Moore S, MacDonald R. Medical transfer of patients in preterm

labor: treatment and tocolytics. Prehosp Emerg Care. 2015;19:103e109.

and

Akl N, Coghlan EA, Nathan EA, Langford SA, Newnham JP. Aeromedical transfer

of women at risk of preterm delivery in remote and ruralWestern Australia: why

are there no births in flight? Aust N Z J Obstet Gynaecol. 2012;52:327e333.

and of course the trigger paper from our NT experience is here:

Shipway T, Johnson E, Bell S, Martin J, Clark P. A Case Review: In-Flight Births Over a 4-Year Period in the Northern Territory, Australia. Air Med Journal. 2016;315:317-20. 

 

 

 

 

The Remote Bad Stuff

Last time Jodie Martin, Flight Nurse extraordinaire dropped by she shared one of our most popular posts ever. Jodie returns with a little on the Top End experience of sepsis. 

Time for a look at some remote medicine again.

CareFlight provides the aeromedical service for the top half of the Northern Territory (NT) in Australia.  The area covered by the service is the same size as France but has only 160,000 people.  And less vineyards.

As 115,000 of this population are in Darwin which is serviced by road ambulance services this leaves CareFlight to provide services to about 45,000 people in very remote and widely scattered centres, most of which are small Indigenous communities.  The catchment area has only two rural hospitals which are non-referral centres with care otherwise provided in remote health clinics. Even then not everyone lives close to a rural hospital or remote health clinic. Some rural folk still have to drive several hours or even a few days to any level of health care. Access to health care is a real challenge when someone becomes sick.

The Top End of the Northern Territory may be sparsely populated with 0.2 persons per square km, but it has the highest incidence of sepsis in Australia and five times higher rates than those recorded in the US and Europe 1,2. It has been suggested that one of the reasons for the high incidence of sepsis is related to the higher Indigenous population in the Top End 2. The incidence of sepsis requiring ICU admission in the Top End of the NT for Indigenous people is reported to be 4.7 per 1,000. In the non-Indigenous population there are 1.3 admissions per 1000 people. When compared to the rest of Australia, the rate of admission to an ICU for sepsis is 0.77 per 1,000 2  with national 28 day mortality rates of 32.4% 1.

The Top End – Not Just Popular with People

Human-invading bacteria and viruses love the warmth and moisture of the tropics. To make things even harder, the Top End has the highest rate in the world of melioidosis, a very nasty pathogen found in the wet tropics of Australia.  Melioidosis has been classified as a Type B bioterrorism agent by the Centre for Disease Control in the US and kills up to 40% of infected patients often from rapidly fulminant disease.  However most sepsis is of the more common garden variety, but still causes severe, life threatening illness.

jurgen-otto
A quick editorial note that we have done another story from the Top End and still it’s not about crocodiles. We apologise but it turns out there are other things up there trying to kill you.

When you add the challenges of distance and retrieval times, meeting targets for sepsis treatment which are time-based would seem an impossible task. Given this, we were keen to review the retrieval of septic shock patients in our service to see what the outcomes are like and whether we could improve the process.  The results have just been published in the Air Medical Journal which you can find here.

The patients were sick.  A third of patients required intubation and 89% required inotropes.  Median mission time however was 6 hours and the longest case took 12 hours.  Given the remoteness and time delays inherent in retrieval over such distances with a population known to have worse health outcomes, you would expect mortality to be high.  Surprisingly however the 30 day mortality in this group of 69 patients, which are predominately Indigenous, was only 13%.  This is lower than previous rates described for both sepsis in Australian Indigenous populations and for patients in Australian and New Zealand intensive care units.

That’s Excellent, But Why?

It is interesting to speculate on the possible reasons for such good outcomes.  Reasons might include:

  • The relatively young age of the patients compared with many series. Perhaps the better physiological reserves of younger patients are still a key factor despite the higher rates of co-morbidities.
  • Early antibiotics – these are almost always given by the end of the referral call. Good clinical coordination has a role to play in this too.
  • Early aggressive fluid resuscitation – the median volume of crystalloid administered was 3L during the retrieval process.
  • Inotropes administered following fluid resuscitation occurred in the vast majority of patients.
  • Early referral – recognising when a patient is sick. This is something we’d like to gather more data on. We didn’t record how long a patient was in a remote health centre before a referral call was made, but we have a suspicion early referral might have played a part here.

It is also interesting to note the good outcomes that were achieved without invasive monitoring in approximately half the patients retrieved.  Perhaps there are shades of the findings of the ARISE study here where fancy haemodynamic monitoring really did not seem to make much difference either – what matters in the retrieval context is early antibiotics, aggressive fluid resuscitation and early intubation when indicated.

We did not randomise patients to invasive versus non-invasive monitoring and it is possible that the sicker patients and those with longer transport times received the invasive version.  But it is also possible that we get too hung up on this stuff and it is the basics that really matter whether you are in the city or a really remote health clinic.

The Wrap

The Australian Indigenous population have poorer health outcomes than the general community. Outcomes are even worse for those residing in remote areas than those in urban areas. In our small study it is pleasing to see such good outcomes despite remoteness and long retrieval times. Our young patient cohort recovered well considering how sick they were but what would be even better is preventing sepsis in the first instance. The incidence and burden of sepsis in young Indigenous people requires preventative strategies and appropriate and timely health care resources. Improving access to health care, improved housing and decreasing overcrowding, decreasing co-morbidities and decreasing rates of alcohol and tobacco use are hopefully just some of ways we can possibly decrease the incidence of sepsis and contribute to closing the gap.

Notes:

That croc with almost enough teeth came from flickr’s Creative Commons area and is unchanged from Jurgen Otto’s original post.

Here’s the link to the paper that’s just been published:

Joynes EL, Martin J, Ross M. Management of Septic Shock in the Remote Prehospital Setting. Air Med Journal. 2016;35:235-8. 

The two references with the actual superscript numbers above are here:

  1. Finfer S, Bellomo R, Lipman, J, et al. Adult population incidence of severe sepsis in Australian and New Zealand intensive care units. Intensive Care Med. 2004; 30: 589-596.
  2. Davis J, Cheng A, Humphrey A, Stephens D, Anstey N. Sepsis in the tropical Top End of Australia’s Northern Territory: Disease burden and impact on Indigenous Australians. Med J Aust. 2011; 194: 519-524.

Here’s a bit on melioidosis from the CDC website and here’s a review in the NEJM.

If you want to look more at the government’s Closing the Gap stuff, you could go here.

Brighter Lights for Darker Nights (or How and Why to Set up Trauma Workshops for Your Local Volunteers)

Greg Brown, the person with the job of coordinating education at CareFlight on things anyone with a bit of background can do to help make the wide, brown land feel a little less remote. 

It is a dark and stormy night. It had been a long day at work and you are now driving home from a nearby town where you have been holding fort at what is loosely termed a “hospital”. Your mind drifts to all that is warm, dry and welcoming – family, a comfortable lounge, re-runs of your favourite show (obviously it’s Helicopter Heroes…) – only 40km to go…

These were your last conscious thoughts before you hit a kangaroo, lost control of your Tesla (okay, maybe a Camry) and crash into a tree.

A passer-by calls emergency services. They are on their way – but it’s a dark and stormy night and you don’t live in NSW (that’s Newcastle, Sydney or Wollongong) and the response will be made up of volunteer emergency services.

Meanwhile, a page goes out back in your hometown. Members from various volunteer agencies drop their food and head to their respective depots, don their respective protective uniforms (usually coloured yellow, orange or white), jump in their respective response vehicles and head to the scene where you are now cold, wet and sore.

You are still in your car – you cannot get out because the dashboard has collapsed into your lap. The passer-by tells you that the first response vehicle has arrived. You twist your head to see who it is – Police, Fire or Ambulance? It’s none of those – you don’t live in NSW (again, that’s Newcastle, Sydney or Wollongong) and the response is made up of volunteer emergency services: State (or Territory) Emergency Service, the volunteer bush fire brigade and some others that you didn’t even know existed.

“Where’s the ambulance?” you ask – but the nearest ambulance is at least another half an hour away – maybe more! They tried calling the local doctor but it turns out that was you.

Damn those “dark and stormy nights” you sigh……

Reds Mando Gomez
The other kangaroo probably looks even less impressed.

The Problem

If this scenario sounds far fetched then I encourage you to head out of the big smoke and go bush for a while. Situations such as this are not only real – they are an almost daily occurrence in Australia and many other parts of the world. Conservative estimates reveal that volunteer emergency services personnel outnumber their paid (professional) compatriots by a ratio of 20:1 in Australia with similar comparisons reported abroad.

But all is far from lost. The reality is that the vast majority of emergency services volunteers in Australia are highly capable, appropriately resourced and widely respected for the unpaid yet vital roles that they perform in serving their communities in times of need.

But (yes, there is always a but) those roles rarely include the provision of medical first response unless they are trained community first responders or volunteer ambulance officers. As such, it is also a reality that in non-metropolitan Australia the victim of trauma (vehicle, industrial or other) is likely to be treated initially by a volunteer with nothing but a generic first aid kit and some non-specific training – good if you need a splint or sling, not so good if you are seriously injured. What’s more, many of these volunteers lack the confidence to engage in the provision of medical first response.

The Challenge

Whilst it would be nice if an expertly trained and equipped pre-hospital care team was available in every postcode every hour of the day, we all recognise that this is simply not possible. But (yes, another but) we can do something to help the volunteers that are out there in regional and remote areas. It’s called training.

In the mid 2000’s a small group of “greybeards” at CareFlight were discussing the ways of the world over a few decaf-soy-mochaccinos (probably more likely double macchiatos…) and collectively voiced that if only those volunteers in regional and rural Australia felt appropriately trained and empowered to do a few extra small things for their casualties then they could make even more of a difference to the survivability of the people that they treat. Thus, the concept of the Trauma Care Workshop (formerly termed the Volunteer Trauma Course) was born. With this concept came a list of expectations. These included:

  • The training was to augment the participants’ current training content and systems, not replace them;
  • It needed to bridge the gap between high quality first aid and the care provided by professional medical responders;
  • The educators providing the training needed to be expert clinicians that were clinically current – credibility was going to be important;
  • The training needed to occur in the locations where the responders live – not in Sydney; and
  • Since the participants were likely to comprise mainly volunteers, the training had to be for free (or at least at no charge to the individuals).

Nothing like a good challenge to get the neurons firing…

The Role of AeroMed in Regional Trauma Training

There is little doubt that the sound of an aeromedical flight (helicopter or fixed wing) provides reassurance to both the injured patient and their carers, especially in regional and remote areas. The very sound of an inbound flight conjures up images of advanced medical care, expert clinical decision makers and the opportunity to whisk the patient away to a shiny hospital filled with white lab coats and machines that go “ping”.

The reality is that most trauma patients do not get better at the place their injury happens; they get better in hospitals. So the presence of an aeromedical retrieval team on scene does not in and of itself guarantee survival for the patient – but it can help. So too can that group of volunteer emergency services personnel – if they are trained and empowered to do so.

Herein lies the opportunity. Aeromedical providers owe it to the volunteers that they support to build local capacity and resilience within the regional and remote areas that they service. After all, at some point we all must recognise that we all exist for the same purpose – that is to save lives, speed recovery and serve the community. It is not about the colour of your uniform, nor is it about the company that pays you – it’s about people.

The same is true for clinicians working in regional and remote areas but not associated with an aeromedical provider. Clinic staff are often the second line of defence in the battle against trauma related morbidity and mortality. Supporting the local emergency response team in many ways makes your job easier, and who doesn’t want that?

So what can we offer? To me, we can offer three things: time, knowledge and support.

1. Time

Never underestimate the power of offering your time. I know you are busy – heck, we are all busy. But finding the time to head bush and conduct clinical teaching for those who are rarely exposed to it is one of the most powerful gifts that you can offer.

Emergency services personnel, particularly those of the volunteer varieties, want to know what you are thinking when you are presented with a casualty – any casualty. For you it may be a simple, run of the mill, seen it a thousand times before type of patient; but for the local volunteer emergency services personnel it will likely be new, difficult, unexpected, or perhaps all three! What are YOU thinking when you fly overhead? What goes through YOUR mind when you step onto the pre-hospital scene? How does YOUR clinical assessment process differ from that of a first aider? They can never learn from you if you don’t ever find the time to visit their locations and teach them. Your time is important – to both you and them.

2. Knowledge

Most readers of this article will have at some point in their careers been subjected to a training session delivered by an individual who knows their content but nothing more. This is all-too-often the case in first aid. The reality is that the process for teaching accredited first aid in Australia is highly regulated within the AQTF (that’s the Australian Quality Training Framework – if you’re having trouble sleeping you could look right about here). To pretend you can change or ignore this is perilous.

So aeromedical providers need to embrace the fact that the emergency services personnel that they work with already hold first aid skills and therefore seek to deliver complimentary training. In other words, fill the gaps but eliminate duplication.

What are the elements of casualty care that are easy to perform by a non-clinician yet not covered by the majority of first aid courses? Consider topics such as arterial tourniquets, the difference between crush injury and release syndrome, and the elements of aeromedical evacuation that they need to know (e.g. like not using flares when you’re flying on night vision goggles).

3. Support

The need to build resilience amongst emergency services personnel in Australia is well publicised (if you don’t believe me check out this or this or this).

Building this resilience is a long and involved process, but simple things can and do make a difference in the lives of emergency services personnel. It can be as simple as: acknowledging effort; involving them in decisions; asking them their opinions; and explaining what you are doing / thinking. But you can build resilience during training by offering your time to answer questions or “fill in the blanks”.

For example, in 2015 I taught a bunch of volunteer and professional emergency response personnel at a resort in an extremely remote part of Australia (note: details kept purposely vague). Whilst there we heard of a horrendous job that the local team attended which involved the death of a tourist. In 2016 our team taught a different bunch of response personnel in a different part of Australia and had the opportunity to informally debrief an individual who was effected particularly badly by the aforementioned incident – essentially, this individual volunteered to accompany and protect the deceased tourist overnight in the bottom of a canyon until a repatriation team could fly from the nearest urban centre.

This is an extreme example, but every time I teach I am afforded the privilege of hearing these personal stories. I like to think that every time an individual vents their job related emotions to me that “black dog” is pushed ever so slightly out of the picture.

CareFlight’s Trauma Care Workshop

As previously mentioned, the Trauma Care Workshop (TCW) concept was born out of numerous conversations had by the “greybeards” of CareFlight. It took a few years to secure the funding, purchase the equipment and, of course, write the content, but between January 2011 and June 2016 a total of 174 TCW’s were delivered to a total of 2711 emergency services and first response personnel across Australia – at no cost to the individual attendees.

Everywhere copy
Trauma Care Workshop Locations 2011-2016

The TCW is an eight hour interactive workshop that is delivered either as a single day session or over two consecutive nights. Utilising the principles of adult learning (look up andragogy or Knowles’ principles of adult learning – or just go here) the content is delivered by professional pre-hospital care providers, many of whom also hold post-graduate or vocational qualifications in clinical education, training or assessment.

Any contemporary medical training that is worth the paper it is written on is interdisciplinary in nature. Therefore, the TCW works best when members from different services (e.g. state emergency services, bush fire brigades, rescue agencies, police, park rangers etc) all attend. After all, when was the last time you attended a pre-hospital scene and saw only one colour uniform?

KI copy
Park Rangers and Volunteer Ambulance Officers training together on Kangaroo Island, South Australia

The reality is that pre-hospital scenes are like an open bag of Skittles – every colour under the rainbow all mixed in together. But this goes for the Educators too. Where possible, the three Educators on any given TCW will come from diverse clinical backgrounds – critical care doctors, specialist flight / emergency nurses and professional paramedics.

Importantly, all content is evidence based and research centred. The content itself is delivered through a combination of pre-readings, didactic lessons, interactive skill sessions and immersive scenarios which cover the essentials of pre-hospital trauma care:

  • Patient assessment techniques;
  • Haemorrhage control;
  • Basic airway management;
  • Mass casualty triage;
  • Extrication;
  • Burns management;
  • Teamwork and communication strategies (including the need for a shared mental model); and,
  • The essentials of aeromedical evacuation.

But what the TCW does NOT do is change anybody’s scope of practice; the TCW is designed to augment previous training, not replace it. We are not there to take over the world or supersede anyone’s service – it’s about the patient, not the uniform.

If individuals who complete a TCW wish to see their scope of practice altered in light of their newfound knowledge and skills then the responsibility for achieving these changes rests with them (although we are always happy to provide the evidence to back up their case).

Kalgoorlie copy
Police and local mine rescue staff often form the frontline in emergency response in outback areas (photo from a course in Kalgoorlie, Western Australia).

But what about you?

Whilst at CareFlight we love delivering high quality evidence based training in locations that are off the beaten track the reality is that we cannot be everywhere. But if you are living and working as a clinician in regional areas then you can help.

Head down to the depot of your local volunteer emergency services agency and introduce yourself. Whilst there, ask them how you can help. They will most likely be looking for more volunteers but the purpose of this article is not to recruit those (although that would be a welcome side effect); instead ask them what medical-based training they’ve been looking for and seek to fill the gaps.

You may find this to be a challenge, especially if pre-hospital care is not your forte. However, the benefits for the community – you, the volunteers and the constituents alike – will be huge. You will need to conduct research, refresh some long forgotten knowledge and perhaps step outside of your comfort zone – all great professional development benefits.

NT copy
Park rangers, resort staff, volunteer emergency services and local cattle station workers all training together at a Trauma Care Workshop in the Northern Territory

The volunteers will benefit from the networking and the opportunity to expand their base of knowledge via education delivered by a local healthcare professional.  This will lead to increased confidence within the volunteer group and therefore positively affect their willingness to commence appropriate clinical treatment (even when their primary role is not a medical one). The community will benefit by having local emergency responders who are better trained, more empowered and have increased resilience.

In the words of Mr Dylan Campher (from Queensland Health’s Clinical Skills Development Service), “Economy of scale is produced by having a single agreed model and adapting that to the local needs”. In other words, training and working together makes sense. There are some caveats though:

  1. Don’t expect to change the world overnight – believe me when I say that the wheels of change turn slowly in highly regulated environments.
  2. Don’t attempt to teach something that you have no credibility in – differentiate between what you know (based on experience, training and research) versus what you think.
  3. And perhaps most importantly, don’t ever discredit their previous training. Is it perfect? Probably not. But has it helped serve the community prior to your arrival? Absolutely!

Remember: fill the gaps, eliminate duplication.

That dark and stormy night …

All is not lost. It turns out that the volunteers in their various coloured suits have trained for this very incident – in fact, judging by their shared mental model, it appears that they have trained together!

They rapidly assess the scene and make it safe then apply a “zero survey” to you. This “zero survey” has allowed them to sort any oxygenation issues and expedite your extrication from the car using appropriate spinal precautions. They then applied all the relevant clinical interventions within their scopes of practice including binding your pelvis and protecting you from the elements; all you need now is for the volunteer ambulance crew to arrive on scene so that you can be taken back to work (no re-runs of Helicopter Heroes for you tonight).

You gaze up at the volunteer in the yellow / orange / white uniform and ask “Who are you people, and where did you learn to do all of that?” Her response? “We are just the local volunteers – and your predecessor taught us.”

 

The Post Script:

If you want to know more about the CareFlight Trauma Care Workshop then go here.

If you would like to know about the other clinical education delivered by CareFlight then check out this spot.

If you would like to keep up with where we are and what we are doing then consider following us on Twitter where we travel under @MyCareFlight_Ed

The image of the kangaroos was posted by Mando Gomez under Creative Commons and is unchanged from the original post. All those appearing in the other photos have given previous permission.

 

A Bit Early and A Bit Far Away

We welcome another new contributor to the site with this post. Jodie Martin is a clinical educator and flight nurse working in the Top End of Australia. She has just finished up a Masters which included looking at a big retrieval challenge – preterm births in the wild reaches of the Northern Territory. 

Which retrieval taskings scare you the most? Is it the paediatric trauma patient in the prehospital setting, a long way away from the nearest trauma setting? Or perhaps the critically unwell and septic neonate in a remote clinic, which you know will take you 6 hours to retrieve to a hospital?

For me, it’s the women in preterm labour. Even after 10 years of flight nursing, it’s the women in preterm labour that make me nervous.  And before I became a flight nurse I’d been a midwife for several years, working in rural and remote settings where I became fairly comfortable caring for obstetric patients in an isolated setting, because you had to be really. Aeromedical retrieval teams are rarely as quick as you’d like out there.

So even after a lot of exposure to obstetric patients in isolated areas, it is the preterm labour cases which make me sit on the edge of my seat. These are the cases I really want that crystal ball so we can foresee what is going to happen; is this woman going to deliver before we get there? Do we need to spend time on the ground to wait for birth or can we risk it and transfer her in labour and get her to hospital in time to allow preterm birth in a tertiary health centre? How will I manage an unexpected birth of a preterm baby during flight? Do I need to take all of the 100kg+ neonatal equipment to care for a preterm neonate? Do we need a paediatrician, just in case?

A Brief History of Stopping Labour in the Top End

In 2009 or there about, obstetric services in the Top End of the NT moved away from using IV salbutamol and started using nifedipine as the tocolytic of choice.  This was because nifedipine was seen as a safer tocolytic with less adverse maternal side effects. In particular, there is a high incidence of rheumatic heart disease in the NT and we now had a better option of avoiding the negative effects IV salbutamol can have on cardiac function.

We already knew that facilitating in utero transfer of preterm babies improves their outcomes so that was still our aim. 1 However, I was yet to be convinced nifedipine was a superior choice for the aeromedical transfer of women in preterm labour.

So we turned to the literature to find out about the incidence of inflight births and to determine what happens to the women in preterm labour transported by aeromedical retrieval. Some studies reported no births occur in flight.2 However these studies utilise different types of tocolytics than our aeromedical retrieval service. A Canadian aeromedical retrieval service did report inflight births. 4 of these births occurred despite tocolysis but that tocolytic was not a calcium channel blocker such as nifedipine and the other births received no tocolysis at all 3. Anecdotally we knew at CareFlight NT we’d had 3 inflight preterm births despite nifedipine being administered. In three different Australian based studies which reviewed the transfer of rural and remote women, approximately 50% are in fact discharged.2,4,5

So what about the risks for pregnant women in the Northern Territory? Unfortunately, the news is not good. The NT has the highest rate of preterm births in Australia with 10% of all births occurring before arrival to hospital.6 Indigenous women and newborns do worst on some birth outcomes if they live in a remote area of the Top End of the NT7 and the NT has the highest maternal death rate in Australia.8 So being an Indigenous pregnant woman in a rural remote area of the NT is a combination of a lot of significant risk factors.

Let Me Paint You a Picture of Where We Work

The Top End is a geographical area twice the size of the UK & a just a little smaller than Texas, so around 400,000km2. There are two small rural hospitals which undertake planned low risk, term births. Both hospitals have emergency obstetric and caesarean capability along with the ability to provide immediate neonatal emergency care, but have limited resources to care for a preterm newborn for any extensive period of time.

There are over 35 small remote health centres we service. These health centres have no inpatient facilities and do not perform planned births. These centres can sometimes manage an unexpected normal birth but have no theatre or neonatal nursery care resources. Sometimes there is a remote area midwife available.

There’s only one NICU, which is located at Royal Darwin Hospital. The next closest NICU is 3,027km away in Adelaide. So when a woman presents in preterm labour in a rural or remote area in the Top End of the NT there is a natural level of anxiety as resources are limited, retrieval times can be long and we know we have a high risk obstetric population.

So I thought it was worth looking at our own data on the women we transport in preterm labour to find out more about their outcomes. Plus I needed to do a research project to complete a Masters’ degree.

The aim of our 3 year retrospective study was to determine the outcomes of women in preterm labour transported by aeromedical retrieval. We reviewed all the cases of preterm labour referred to CareFlight NT. Preterm labour was defined as 23+6 to 36+6 weeks gestation with a viable pregnancy. We excluded those women who had been referred after a preterm birth had already occurred. After exclusions for missing & incomplete data, we ended up with a sample of 304 women referred in preterm labour. We examined discharge data at Royal Darwin Hospital to review the outcomes.

What we found

Demographics and retrieval times
The average gestation was 32+2 week and 90% of the women we transferred were Indigenous (there’s that high risk obstetric factor again I mentioned previously).

Retrieval time was taken from time of referral to our logistics coordination unit (LCU) to time of handover at the receiving hospital. Average retrieval time was 5.55hrs. Those women who proceeded to a preterm birth had an average time of birth following referral as 5hrs. Therefore there will be times when a preterm birth occurs before we can get to our destination.

Where preterm birth occurred
The places where women did give birth to a preterm baby:

16% in a remote health clinic

7% in a rural hospital

73% in RDH – the only tertiary health centre in the Top End with neonatal intensive care capabilities

4% elsewhere -3 births occurred in flight, 1 on the tarmac of a remote airstrip and 1 interstate.

Preterm birth remote airstrip-2
Yes of course, this is exactly where we’d like to be setting up for a preterm delivery.

Nearly half of all preterm births which occurred in a rural hospital had been transferred from a remote community to a rural hospital instead of the tertiary centre. It is thought the rural hospital may have been chosen as a destination on occasions it was closer than Royal Darwin Hospital from the referral site and the long transfer was thought likely to end with an inflight birth. This reflects the decision making clinical crews have to be able to make on the run. Detailed midwifery and obstetric assessments and sound judgement are vital skills that the teams have to deploy when faced with the aeromedical retrieval of pregnant women in preterm labour.

Who went on the flights
79% of all retrievals in this cohort were conducted by a flight nurse/midwife alone; 15 (or 44%) of all preterm births occurred outside of any hospital (being a rural or tertiary hospital) with a flight nurse/midwife only crew. This certainly highlights the importance and requirements for ongoing education and training in midwifery, obstetric emergencies and neonatal resuscitation for our flight nurse/midwives plus our rural and remote health colleagues.

Neonatal resus eduation and training-2
Slightly less pressure here.

14% (n=42) of all preterm labour referrals included a CareFlight flight doctor + flight nurse/midwife mix, with 12 preterm births occurring prior to arrival to a tertiary health centre. A paediatrician/paediatric registrar went on 23 taskings (7%) and their skills were required in 5 cases where a preterm birth occurred whilst another 6 of these cases with a paediatrician/paediatric registrar resulted in the woman being discharged with no preterm birth occurring.

Tocolysis
What about the transfer of women in labour after they’d had nifedipine? About half of the women were still contracting upon handover at the receiving hospital whilst 42% had stopped contracting upon handover. 13% of referrals of women in preterm labour delivered a preterm baby prior to arrival at a tertiary health centre despite tocolysis, which could reflect women presenting late in labour & nifedipine not being useful in these and other instances.

Birth outcomes
In aiming to facilitate preterm birth in a tertiary hospital, there will always be a proportion of women who are subsequently transferred and do not go onto give preterm birth. We had a discharge rate of 49% where no preterm birth occurred. Our findings are comparable to other Australian studies. One previous study reported 53% of women in Western Australia transferred by aeromedical retrieval were discharged without birth occurring2 and another study reported 46% of women from rural areas in New South Wales were discharged following transfer to a tertiary centre.5

Yet another study reported 42% of women were discharged without birth occurring following transfer and the authors suggested that remoteness was associated with increasing rates of antenatal transfer.4  This is evident in the results of our study as we found 4% of women were transferred two or more times during a current pregnancy, reflecting the remote nature of the area we service and the high risk obstetric population. We need to expect that in the interest of maximising outcomes for mothers and babies from rural and remote areas, facilitating preterm birth in a tertiary hospital will result in some unnecessary yet costly aeromedical retrievals.

Triage and priority coding

The majority of women were triaged and retrieved appropriately to facilitate aeromedical retrieval in a timely fashion to enable a preterm birth in a tertiary hospital (73%). Five out of the 11 preterm births in a rural hospital were initially planned for retrieval from a remote health centre to the tertiary hospital but were transferred to a rural hospital instead. This may have occurred as the aeromedical crew found the woman was in more advanced labour than anticipated and elected to choose the closer rural hospital. Other aviation factors such as adverse weather may also play a role in these decisions.

Thus triage and priority coding for women in preterm labour reflects accuracy in the need for prompt retrieval, but also sometimes later decisions by the retrieval team who are required to make judgements upon arrival as to whether to allow birth to proceed in an environment with limited resources or risk inflight birth. Decision making on triage and priority coding will always revolve around the facilities and skill of personnel at the referring site, distance, gestational age, cervical dilation, labour advancement and maternal and fetal risk factors.

Stuff this bit of research didn’t tell us

There were several limitations in our study, namely the small sample size and lack of stratification of obstetric risk factors. It was intended at the commencement of this study to report on the doses of nifedipine administered. However, due to lack of documentation and ability to clarify the doses administered, it was decided early in the data collection process to discontinue recording the doses. Thus it has been assumed the dose administered is in accordance with local clinical guidelines (oral nifedipine 20mg given 20-minutely to a maximum of 3 doses in 1 hour then 20mg 3 hourly)10. The doses of nifedipine actually administered may be different to that recommended and therefore the success of in-utero transfer may be dependent on the dose of nifedipine administered.

The Bit for the Fridge Magnet

So, the take home points when it comes to the aeromedical retrieval of women in preterm labour:

  • Prompt retrieval of women in preterm labour is vital to facilitate preterm birth in a tertiary health centre with neonatal intensive care facilities to improve neonatal outcomes or at least get the neonatal intensive care unit to the neonate in a timely manner;
  • Early and aggressive management of preterm labour with nifedipine improves the success of an in-utero transfer;
  • We have a high risk obstetric population in the NT – remember the importance of other preterm labour clinical guidelines such as the administration of steroids and IV antibiotics;
  • Send the right team at the right time. One member of the aeromedical retrieval should have an obstetric/midwifery background. It’s the detailed obstetric assessment which will assist a crew to make that decision of whether to stay and play or scoop and run, hopefully avoiding inflight birth and facilitating a successful inutero transfer to a hospital;
  • Ongoing regular education and training in neonatal resuscitation, neonatal care and obstetric emergencies is paramount for our flight nurses and flight doctors;
  • In the interests of improving maternal and neonatal outcomes, we have to accept that there will be some retrievals of women in preterm labour which weren’t required as a half of them will end up being discharged;
  • Flight crews and retrieval consultants make some tough decisions when it comes to the aeromedical retrieval of women in preterm labour…if only we could have that crystal ball. But at least we know we’re making the right decisions regarding flight crew mix, triage and whether to put a woman in preterm labour on an aircraft or wait on the ground for birth to occur.

And for more details I’ll just have to let you know when the publication hits the journals (very soon I hope …)

 

Notes:

The staff in those photos are OK with those being shared.

The image of MKT airstrip is a Creative Commons one from flickr and is unchanged from the original Ken Hodge posting.

References:

  1. Tara P, Thornton S. Current medical therapy in the prevention and treatment of preterm labour. Seminars in Fetal and Neonatal Medicine. 2004;9(6):481-489. doi:10.1016/j.siny.2004.08.005
  2. Akl N, Coghlan E, Nathan EA, Langford SA, Newnham J. Aeromedical transfer of women at risk of preterm delivery in remote and rural Western Australia: Why are there no births in flight? Australian and New Zealand Journal of Obstetrics and Gynaecology. 2012;52(4):327-333. doi: 10.1111/j.1479-828X.2012.01426.x
  3. McCubbin K, Moore S, MacDonald R, Vaillancourt C. Medical transfer of patients in preterm labour: Treatments and tocolytics. Prehospital Emergency Care. 2015;19(1):103-109. doi:10.3109/10903127.2014.942475
  4. Hutchinson F, Davies M. Time-to-delivery after maternal transfer to a tertiary perinatal centre. Biomed Res Int. January 2014:1-6. doi: 10.1155/2014/325919
  5. Badgery-Parker T, Ford J, Jenkins M, G. Morris J, Roberts C. Patterns and outcomes of preterm hospital admissions during pregnancy in NSW, 2001-2008. Med J Aust. 2012; 196(4):261-265.
  6. Barclay L, Kruske S, Bar-Zeev S, Steenkamp M, Josif C, Narjic C, Kildea S. Improving Aboriginal maternal and infant health services in the ‘Top End’ of Australia; synthesis of the findings of a health services research program aimed at engaging stakeholders, developing research capacity and embedding change. BMC Health Services Research. 2014; 14(1):241.
  7. Steenkamp M, Rumbold A, Barclay L, Kildea S. A population-based investigation into inequalities amongst Indigenous mothers and newborns by place of residence in the Northern territory, Australia. BMC Pregnancy and Childbirth. 2012;12(44): doi:10.1186/1471-2393-12-44. http://www.biomedcentral.com/1471-2393/12/44. Accessed August 13, 2015.
  8. Li Z, Zeki R, Hilder L, Sullivan E. Australia’s mothers and babies 2011 Perinatal statistics series no. 28. 2013. http://www.aihw.gov.au/publication-detail/?id=60129545702. Accessed August 10, 2015.
  9. Roberts C, Henderson-Smart D, Ellwood D. Antenatal transfer of rural women to perinatal centres. High Risk Obstetric and Perinatal Advisory Working Group. Aust N Z J Obstet Gynaecol. 2000;40(4):377-384.
  10. Alukura C. Minymaku Kutju Tjukurpa – Women’s Business Manual (6th Ed). Alice Springs: Centre for Remote Health; 2015

Keeping Things Calm: Remote Retrieval of the Psychiatric Patient

Jodie Mills, RN works with CareFlight’s Top End Medical Retrieval Service, flying out of Darwin across vast stretches of the Northern Territory. She grew up in the Royal Melbourne Hospital ICU before moving to Darwin 8 years ago where she completed midwifery studies.  She joined CareFlight 4 years ago and slightly pities all those who don’t get to fly in the top end. 

 

When asked to contribute to a blog and write about psychiatric aeromedical retrieval all I heard was my colleagues’ collective signs of “not another psych job!!”

The thing is, I’ve developed a bit of an interest in these patients after closely looking at the psychiatric retrievals in NT for the last 3 years. This specialised patient group presents a huge challenge to both the flight crew and our remote colleagues when presenting acutely unwell in our communities.

By the Numbers

I recently presented at the ASA/FNA/ASAM Aeromedical Retrieval Conference in Brisbane. I thought maybe we had a few psychiatric patients but I quickly realised after my presentation that the number of psychiatric retrievals we undertake in the top end is well above average i.e. its extremely high (15% of our total missions).

From Feb 2012 to the 20th October 2014 we retrieved 651 psychiatric patients, averaging 22-24 per month  – it’s an almost daily occurrence. Demographically the patient population remains consistent with approx. 90% of patients Indigenous Australians, with male to female ratio if 1.45:1. The mean age is 31, however our youngest was 12, our oldest being 74 years.

We have only intubated 3% of this population which has led to expedited admission to the singular psychiatric facility at Royal Darwin Hospital (RDH). The inpatient psychiatric ward at RDH has a catchment area of 700,000 square kilometres.

It’s Not Just a Local Thing

Mental illness throughout the world is on the increase with the WHO (2014) predicting mental illness to be second only to cardiovascular disease for burden of disease by 2030. The stigma associated with mental health issues remains the greatest obstacle to such patients accessing appropriate care. This stigma may be even more pronounced in remote Indigenous communities. Drug induced psychosis, predominantly cannabis (397 patients), followed by suicidal ideation/ hanging (224) were the most common diagnosis with the remaining patients having bipolar, mania or behavioural disturbances.

At the ASA conference I asked my aeromedical peers “How do you transport your psychiatric patients?” the answer was “we don’t, they go by road”. I quickly realised then that CareFlight and other retrieval services working in truly remote areas provide a unique service.

The small window view of a big country.
The small window view of a big country.

The Perfect Storm

We all know too well the challenges involved in the aeromedical transport of compliant patients who are unwell. However if we add delusions, hallucinations, physical aggression a tendency to physical violence and homicidal thoughts into the mix we have a potential aviation disaster on our hands. These are the just some of the symptoms the majority of our psychiatric patients display when referred to CareFlight. We then face the task of transporting such patients in a small aircraft where we will place seatbelts and wrist and ankle restraints on them, we will sit approximately 50cm away from them and the tell them they cannot smoke, they cannot go to the bathroom, they cannot eat or drink. I can’t imagine how stressful this must be for a patient that is already thought disordered.

What We Do

The biggest challenge for the aeromedical clinician is assessing the need and amount of sedation that will be required for safe retrieval of the acute psychiatric patient. If we have learnt anything it is definitely that “one-size DOES NOT fit all” when it comes to choosing sedative combinations to safely retrieve acute psychiatric patients. However we have found that pre-flight sedation with an atypical antipsychotic (olanzapine) and a sedative (diazepam) is of the utmost importance. As we become better skilled at treating psychiatric patients we have increased the pre-sedation (Olanzapine & Diazepam up to 20mg oral) which seems to be decreasing inflight sedation requirements. This enables the psychiatric patient to be admitted to the appropriate ward in a timely manner.

Top Tips for What to Do:

  1. Start sedation early:

As mentioned above, premedication prior to retrieval is vitally important. In most cases an antipsychotic (Olanzapine 10mg) and a benzodiazepine (Diazepam 10mg) is the premedication of choice. However, acute psychiatric patients presenting with drug induced psychosis (be it first or subsequent presentations) routinely require up to 20mg- 30mg of both Olanzapine and Diazepam orally. The first dose of sedation is given prior to the crew departing Darwin and then half an hour prior to the crews landing at the communities/ regional hospitals. This administration is overseen by the Medical Retrieval consultant (MRC) on duty. If the patient is not responding to the Olanzapine and Diazepam, the likelihood of requiring in-flight sedation is increased as is the probability of intubation for transport.

  1. In-Flight sedation:

We find in flight we tend to use midazolam, propofol and ketamine. The drug of choice is directly related to the flight doctor’s area of expertise. The ED Registrars tend to use midazolam and ketamine, whereas the ICU and Anaesthetic registrars head for the propofol and midazolam.

On arrival at the referral centre the patients are assessed for the need for further sedation prior to flight.

  1. Pre-Flight Sedation: Midazolam 2-5mg IV
  2. In-flight Sedation:
    • Propofol Infusion 0.2-0.5mg/kg/hr and titrate as required
    • Ketamine Infusion 0.5-1mg/kg/hr and titrate as required

A Richmond Agitation Sedation Scale (RASS) of -3 (Moderate) to -4 (Deep) or a Ramsey Sedation score of 5 indicates the level of sedation required for safe transport.

The ability to discontinue the sedative and allow the patient to wake prior to admission at the receiving centre is extremely important. If the flight crew are able to deliver an acute psychiatric patient to the receiving centre awake and ready for assessment this expedites the patients’ admission to the in-patient facility from the emergency department or, optimally allows for direct entry into the inpatient facility at the receiving centre.

Richmond Agitation Sedation Scale:                                                                               

Richmond copy

Ramsey Sedation Scale:

Ramsey copy

  1. Managing the environment:

Managing the stressors of flight is extremely important when retrieving an acute psychiatric patient. Using ear plugs, blankets to keep patients warm, positioning for comfort when heavily sedated, limiting cabin conversation and ensuring physical restraint are fastened appropriately ensures the acute psychiatric patient does not experience any extraneous stressors throughout their flight.

  1. Local law enforcement:

On occasion the local law enforcement will be involved with the acute psychiatric retrieval. The resource poor environment of the community clinic necessitates the presence of police to help control patients as documented under the section 9.

  1. Coordination:

The coordinating Medical Retrieval Consultant will liaise with the Consultant Psychiatrist on call at the hospital, alerting them to the impending admission.   The Consultant Psychiatrist then coordinates  with their in-patient team to ensure timely assessment of the patient if they are to be admitted through the emergency department.

 

Although the collective groan when another psychiatric retrieval arises resonates through the base we remain steadfast in our support to our rural and remote colleagues and we will continue to play a vital role in maintaining safety of the community, the families and the patients who are all touched by mental illness in the top end of the NT.